Charting New Nanomemory

Nov 14, 2006

University of Arkansas physicists seeking to better understand the properties of ferroelectric materials at the nanoscale have discovered previously unknown properties.

Ferroelectric materials have invaded the everyday lives of most people – they populate watches, smart cards, television remotes and medical ultrasound devices. Because of those important properties, scientists want to be able to use these materials at the nanoscale, but researchers know very little about how these materials work.

Two University of Arkansas physicists have created computer simulations of ferroelectric nanodots to better understand the potential properties of these miniscule powerhouses. Their findings, reported in Physical Review Letters, include the discovery of previously unknown phases of the materials.

In 2004, Ivan Naumov, Laurent Bellaiche and Huaxiang Fu -- all physicists at the University of Arkansas -- determined that individual ferroelectric nanodots could form a vortex within the nanodot, where the charges swirl in almost a circular motion. Recently, Sergey Prosandeev, a UA research associate in physics, and UA collaborators revealed that inhomogeneous electric fields can switch the chirality of such a vortex -- which is important for technological applications.

Prosandeev and Bellaiche looked at how changing the nanodot’s temperature, material and medium would influence the ferroelectric properties of the nanodot. Depending on the temperature and materials from which the medium and nanodot are made, they found six different structural phases, of which two are well-known -- the classic ferroelectric and non-polarized states -- while the other four phases have never been seen before. Such new phases, and their inherent properties, may constitute an important step toward designing nanoscale devices with enhanced or original properties, including greater memory capacity.

“There is no terminology here in this area,” Prosandeev said.

The computer simulations that produce these results provide a road map for experimental physicists, Prosandeev said. The simulations help them know what to look for when they perform experiments.

Prosandeev is a research associate and Bellaiche holds the Twenty-First Century Endowed Professor of Nanotechnology and Science Education in the J. William Fulbright College of Arts and Sciences.

Source: University of Arkansas, Fayetteville

Explore further: Scientists improve microscopic batteries with homebuilt imaging analysis

add to favorites email to friend print save as pdf

Related Stories

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Boosting microelectronics with a little liquid logic

Aug 08, 2014

Certain titanium-based metal oxides can form a crystal structure known as perovskite that results in a subtle internal imbalance of electric charges. This imbalance gives the material the ability to flip ...

LEDs made from 'wonder material' perovskite

Aug 05, 2014

(Phys.org) —Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future.

Recommended for you

Ultrafast remote switching of light emission

2 hours ago

Researchers from Eindhoven University of Technology can now for the first time remotely control a miniature light source at timescales of 200 trillionth of a second. They published the results on Sept. 2014 ...

Nanotube cathode beats large, pricey laser

8 hours ago

Scientists are a step closer to building an intense electron beam source without a laser. Using the High-Brightness Electron Source Lab at DOE's Fermi National Accelerator Laboratory, a team led by scientist ...

User comments : 0