NASA Announces Another Comet Mission

Oct 31, 2006

NASA announced today that it has accepted the University of Maryland proposal to send the Deep Impact spacecraft on an extended mission to get a close-up look at Comet Boethin.

The University of Maryland-led team that produced the spectacular Deep Impact mission, which smashed an impactor into Comet Tempel 1 in July, 2005, hopes new information gathered from Comet Boethin will help coalesce the vast array of new cometary information into solid ideas about the nature of comets, how they formed and evolved and if they have played a role in the emergence of life on Earth.

“As we try to interpret the larger meaning for all comets of our results from Deep Impact at Tempel 1, we have realized more and more how important is the variation from comet to comet,” said Deep Impact leader and University of Maryland astronomer Michael A'Hearn.

“Deep Impact's flyby spacecraft and payload are still healthy. We propose to direct the spacecraft for a flyby of Comet Boethin in December, 2008, to investigate whether the results found at Comet Tempel 1 are unique or are also found on other comets,” said A’Hearn.

"This mission is a very cost effective way to provide new results that can be directly compared to the landmark Deep Impact findings as well as with the results of Deep Space 1 and Stardust and the earlier results from the numerous missions to Comet Halley.”

Mission DIXI

The proposed new mission is called DIXI., which stands for Deep Impact eXtended Investigation. DIXI will use the surviving Deep Impact spacecraft and its three working instruments (two color cameras and an IR spectrometer).

Comet Boethin is now inbound to the sun from its most distant point that is nearly out to the orbit of Saturn, A’Hearn says. “At encounter, Comet Boethin will be just outside Earth’s orbit, closer to the sun than was Tempel 1 (at the orbit of Mars) but about the same distance from Earth.”

Like Deep Impact, DIXI will be a partnership between the University of Maryland, NASA's Jet Propulsion Laboratory (JPL), and Ball Aerospace & Technologies Corporation.

"One of the great surprises of comet explorations has been the wide diversity among the different cometary surfaces imaged to date," said A'Hearn, who will be principal investigator for DIXI. “Even on Tempel 1, the comet we've imaged the best, there is shocking variability in its surface. The comet's different surface types clearly have undergone different histories.

A'Hearn says the data obtained from DIXI will also will help scientists determine which characteristics of comet structure and composition are primordial, reflecting conditions and processes that existed 4.5 billion years ago when the solar system formed, and which are the result of evolutionary forces (heating and cooling, impacts, etc.) that have acted on comets since that time.

"Data from comets can help us to better understand the origin of the solar system, as well as what role, if any, comets may have played in the emergence of life on Earth," said Jessica Sunshine, a member of the Deep Impact science team, who will be deputy principal investigator on DIXI. "However, we first must know which cometary characteristics are due to evolution and which are primordial."

Deep Impact was the first large scale experiment ever conducted on a comet. The Deep Impact flyby spacecraft made many surprising discoveries on approach to Comet Tempel 1. These include an extremely fluffy composition that largely insulates the interior from heat experienced by the surface; frequent, natural outbursts; major differences in the distribution of carbon dioxide and water; craters and other surprising geological features; demonstration that the ice below the surface must be evaporating (subliming) to water vapor, and the first detection of ice (a very small amount) on a cometary nucleus.

"Since half the discoveries at Tempel 1 were from the flyby data taken before impact, DIXI can return half the science of Deep Impact for much less than 10 percent of the cost of Deep Impact," A’Hearn said. “From the point of view of cost effective science, an extended mission such as DIXI is unbeatable."

Source: University of Maryland

Explore further: Life 'not as we know it' possible on Saturn's moon Titan

add to favorites email to friend print save as pdf

Related Stories

A recipe for returning Pluto to full planethood

Feb 20, 2015

A storm is brewing, a battle of words and a war of the worlds. The Earth is not at risk. It is mostly a civil dispute, but it has the potential to influence the path of careers. In 2014, a Harvard led debate ...

Gullies on Vesta suggest past water-mobilized flows

Jan 23, 2015

(Phys.org)—Protoplanet Vesta, visited by NASA's Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its ...

Rosetta data give closest-ever look at a comet

Jan 22, 2015

On Nov. 12, 2014, the European Space Agency's Rosetta mission made history when its Philae lander touched down on the surface of comet 67P/Churyumov-Gerasimenko. While this exciting technical achievement ...

Recommended for you

Study of atmospheric 'froth' may help GPS communications

Feb 27, 2015

When you don't know how to get to an unfamiliar place, you probably rely on a smart phone or other device with a Global Positioning System (GPS) module for guidance. You may not realize that, especially at ...

SMAP satellite extends 5-meter reflector boom

Feb 27, 2015

Like a cowboy at a rodeo, NASA's newest Earth-observing satellite, the Soil Moisture Active Passive (SMAP), has triumphantly raised its "arm" and unfurled a huge golden "lasso" (antenna) that it will soon ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.