Engineers building first space supercomputer

Oct 26, 2006

HAL may soon be getting some company. But unlike the famous computer companion in Stanley Kubrick’s “2001: A Space Odyssey,” the first space-based supercomputer — so described because it will be by far the most powerful computer in space — is already nearing reality.

Engineering researchers at the University of Florida and Honeywell Aerospace are designing and building the computer projected to operate as much as 100 times faster than any computer in space today. Expected to be launched aboard a NASA rocket on a test mission in 2009, the computer is needed to process rapidly increasing amounts of data gathered by advanced scientific satellites. It is also needed to help space probes make more rapid decisions by themselves, independently of their Earth-bound minders.

“To explore space and to support Earth and space science, there is a great need for much more processing power in space,” said Alan George, a professor of electrical and computer engineering and UF’s principal investigator on the project.

Computers have become far more powerful and faster in recent decades, but these advances have been largely confined to Earth. That’s because all computers sent into space must be “hardened” or protected against cosmic radiation prevalent outside the Earth’s atmosphere, a process that slows their performance and increases their size and cost. The result is that even as satellites and space probes have become far better at gathering information, most of their data not has to be sent to ground stations on Earth for processing.

“Usually the downlinks have very limited bandwidth. There are only so many bits per second you can send down from a satellite,” said John Samson, the principal investigator for the project at project at Honeywell’s Clearwater facility. “That means scientists are very limited in how much science they can do.”

Today’s unmanned space probes also have restricted abilities to act independently, relying instead on relaying much of their command information back and forth from Earth. Because of the huge distances in space, that makes it impossible for mission controllers on Earth to respond in real time to short-lived or unexpected events. If probes had more sophisticated computers on board, they could make more of their own decisions, such as quickly selecting the best sensor or camera to record a momentary event of interest.

“To be autonomous is to require a lot of computation, and until now, conventional space processing technologies have been incapable of high-performance computing,” George said.

The UF-Honeywell computer aims to upgrade both satellites and probes with a novel design called the Dependable Multiprocessor. Funded by NASA’s New Millennium Program and the Florida High Technology Corridor Council, the goal is to cope with radiation from solar flares or other space events not through the physical hardening of components – but rather through software that allows the computer to survive radiation-caused flaws or errors.

As George put it, “when you know components are going to fail, you can design the system to automatically adapt and thereby mitigate the effects of that failure.”

A microwave-sized box full of circuit boards in a UF electrical and computer engineering laboratory has been ground zero for the project. There, George and his team of graduate students develop and evaluate concepts and elements of the system. As per the project’s requirements, they feature off-the-shelf components with no deliberate radiation hardening. Their methods involve strategies such as making the computer fault-tolerant, or able to make an instant switch from a temporarily failing board to a functioning one. They also use algorithm-based techniques to detect and correct processing errors. “If one board is failing because of radiation, we can automatically go to another,” George said.

Samson said Honeywell is applying UF’s basic research to build a high-performance computer capable of actually flying in space. Even with the radiation problem solved, that’s a huge challenge because the system must be small, lightweight, capable of surviving the vibration of launch and the shock of the delivery vehicle separating from the booster rocket –and operate on relatively little precious electricity, among other challenges. “Space is a pretty tough operational environment,” Samson said.

If plans go as intended, the completed computer is expected to fly aboard the unmanned ST8 rocket mission on a test mission in February 2009.

Source: University of Florida

Explore further: Successful read/write of digital data in fused silica glass with high recording density

add to favorites email to friend print save as pdf

Related Stories

A newborn supernova every night

Oct 17, 2014

Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech's Palomar Observatory that ...

Mysterious Midcontinent Rift is a geological hybrid

Oct 16, 2014

An international team of geologists has a new explanation for how the Midwest's biggest geological feature—an ancient and giant 2,000-mile-long underground crack that starts in Lake Superior and runs south ...

Recommended for you

US official: Auto safety agency under review

4 hours ago

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Out-of-patience investors sell off Amazon

5 hours ago

Amazon has long acted like an ideal customer on its own website: a freewheeling big spender with no worries about balancing a checkbook. Investors confident in founder and CEO Jeff Bezos' invest-and-expand ...

Ebola.com domain sold for big payout

5 hours ago

The owners of the website Ebola.com have scored a big payday with the outbreak of the epidemic, selling the domain for more than $200,000 in cash and stock.

Hacker gets prison for cyberattack stealing $9.4M

9 hours ago

An Estonian man who pleaded guilty to orchestrating a 2008 cyberattack on a credit card processing company that enabled hackers to steal $9.4 million has been sentenced to 11 years in prison by a federal judge in Atlanta.

Magic Leap moves beyond older lines of VR

10 hours ago

Two messages from Magic Leap: Most of us know that a world with dragons and unicorns, elves and fairies is just a better world. The other message: Technology can be mindboggingly awesome. When the two ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

nuge
not rated yet Jul 24, 2009
awesome