Team develops DNA switch to interface living organisms with computers

Oct 25, 2006

Researchers at the University of Portsmouth, UK, have developed an electronic switch based on DNA - a world-first bio-nanotechnology breakthrough that provides the foundation for the interface between living organisms and the computer world.

The new technology is called a ‘nanoactuator’ or a molecular dynamo. The device is invisible to the naked eye - about one thousandth of a strand of human hair.

The DNA switch has been developed by British Molecular Biotechnology expert Dr Keith Firman at the University of Portsmouth working in collaboration with other European researchers.

Dr Firman and his international team have been awarded a €2 million European Commission grant to further develop this ground-breaking new technology.

But the DNA switch has immediate practical application in toxin detection, and could be used in a biodefence role as a biological sensor to detect airborne pathogens.

The future applications are also considerable, including molecular scale mechanical devices for interfacing to computer-controlled artificial limbs.

‘The possibilities are very exciting. The nanoactuator we have developed can be used as a communicator between the biological and silicon worlds,’ Dr Firman said.

‘I could see it providing an interface between muscle and external devices, but it has to be pointed out that such an application is still 20 or 30 years away.’

The molecular switch comprises of a strand of DNA anchored in a miniscule channel of a microchip, a magnetic bead, and a biological motor powered by the naturally occurring energy source found in living cells, adenosine triphosphate (ATP).

These elements working together create a dynamo effect which in turn generates electricity. The result is a device that emits electrical signals - signals that can be sent to a computer. The switch, therefore, links the biological world with the silicon world of electronic signals.

The nanoactuator has been patented by the University of Portsmouth, and a patent application for the basic concepts of biosensing is pending.

Source: University of Portsmouth

Explore further: Tough foam from tiny sheets

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Tough foam from tiny sheets

15 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0