Team develops DNA switch to interface living organisms with computers

Oct 25, 2006

Researchers at the University of Portsmouth, UK, have developed an electronic switch based on DNA - a world-first bio-nanotechnology breakthrough that provides the foundation for the interface between living organisms and the computer world.

The new technology is called a ‘nanoactuator’ or a molecular dynamo. The device is invisible to the naked eye - about one thousandth of a strand of human hair.

The DNA switch has been developed by British Molecular Biotechnology expert Dr Keith Firman at the University of Portsmouth working in collaboration with other European researchers.

Dr Firman and his international team have been awarded a €2 million European Commission grant to further develop this ground-breaking new technology.

But the DNA switch has immediate practical application in toxin detection, and could be used in a biodefence role as a biological sensor to detect airborne pathogens.

The future applications are also considerable, including molecular scale mechanical devices for interfacing to computer-controlled artificial limbs.

‘The possibilities are very exciting. The nanoactuator we have developed can be used as a communicator between the biological and silicon worlds,’ Dr Firman said.

‘I could see it providing an interface between muscle and external devices, but it has to be pointed out that such an application is still 20 or 30 years away.’

The molecular switch comprises of a strand of DNA anchored in a miniscule channel of a microchip, a magnetic bead, and a biological motor powered by the naturally occurring energy source found in living cells, adenosine triphosphate (ATP).

These elements working together create a dynamo effect which in turn generates electricity. The result is a device that emits electrical signals - signals that can be sent to a computer. The switch, therefore, links the biological world with the silicon world of electronic signals.

The nanoactuator has been patented by the University of Portsmouth, and a patent application for the basic concepts of biosensing is pending.

Source: University of Portsmouth

Explore further: Researchers demonstrate that processing can affect size of nanocarriers for targeted drug delivery

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

User comments : 0

More news stories

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Polymer microparticles could help verify goods

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...