How can we make nanoscale capacitors even smaller?

Oct 12, 2006

Researchers at UC Santa Barbara have discovered what limits our ability to reduce the size of capacitors, often the largest components in integrated circuits, down to the nanoscale. They have answered a 45-year old question: why is the capacitance in thin–film capacitors so much smaller than expected?

Because there is great interest in increased portability in consumer electronics, researchers are continually searching for ways to reduce the size of electronic devices, but capacitors have proved particularly problematic. Researchers have tried to use high-permittivity materials to achieve more capacitance in a smaller area, but nanoscale devices have yielded lower-than-expected capacitance values. These low values have limited the performance of thin-film capacitors and prevented further device miniaturization.

Nicola Spaldin, a professor in the Materials Department of the College of Engineering, and her collaborator, post-doctoral researcher Massimiliano Stengel, used quantum mechanical calculations to prove that a so-called "dielectric dead layer" at the metal-insulator interface is responsible for the observed capacitance reduction.

Spaldin and Stengel explain, in the October 12 issue of Nature, that the fundamental quantum mechanical properties of the interfaces are the root cause of the problem, and show that metals with good screening properties can be used to improve the properties. "Our results provide practical guidelines for minimizing the deleterious effects of the dielectric dead layer in nanoscale devices," they say.

Source: UC Santa Barbara

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

add to favorites email to friend print save as pdf

Related Stories

Researchers make 'nanospinning' practical

Nov 20, 2012

Nanofibers—strands of material only a couple hundred nanometers in diameter—have a huge range of possible applications: scaffolds for bioengineered organs, ultrafine air and water filters, and lightweight ...

'Nanocable' could be big boon for energy storage

Jun 07, 2012

Thanks to a little serendipity, researchers at Rice University have created a tiny coaxial cable that is about a thousand times smaller than a human hair and has higher capacitance than previously reported ...

Recommended for you

First direct observations of excitons in motion achieved

16 hours ago

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...