Building on Shifting Sands: Professors Study Clay-fluid Interactions

Sep 07, 2006

Clay may make a good modeling toy, but it presents challenges for engineers. Clay likes to swell and clay likes to shrink, challenging engineers to build structures on the equivalent of shifting sands. Two North Dakota State University professors have received $209,922 from the National Science Foundation to study these clay-fluid interactions.

Dinesh Katti, Ph.D., associate dean of research for the College of Engineering and Architecture; and Kalpana Katti, Ph.D., associate professor of civil engineering at NDSU, will conduct the research. The grant supports a three-year project outlined in their proposal titled “Modeling Effect of Molecular Interactions on Evolution of Microstructure and Swelling and Swelling Pressure Responses in Montmorillonite Expansive Clays.”

This research will use quantitative computer modeling to understand molecular interactions between clays and fluids and how it impacts engineering properties—since both are critical to design structures and develop solutions to prevent bridges and roads that buckle or buildings that shift or sink. Such factors are also critical to evaluate the feasible use of these materials for environmental engineering and other engineering applications.

“These interactions play a critical role in the swelling behavior in expansive clays that causes tremendous damage to infrastructure in the United States and around the world,” said Dinesh Katti. “In the United States alone, the annual loss due to these soils is reported to be approximately $7 billion.” In the Red River Valley of eastern North Dakota, clays extend more than 100 feet beneath the soil. Structures in the Valley often stand on hundreds of steel pilings or concrete piers driven through the clays until hitting firmer ground. Other areas such as soils of the Mississippi Delta present similar challenges.

The Kattis’ research is an important step toward the developing micro/nano mechanics of swelling soils. It also quantitatively provides a framework for simulations to study the effect of chemical and biological molecules on swelling and swelling pressure. This will develop innovative and environmentally attractive methods to stabilize swelling clays while retaining good engineering properties, according to Dr. Kalpana Katti.

The project will use a combination of techniques to develop multiscale models of clay-fluid interactions. The goal is to develop an approach to bridge molecular level clay-fluid interactions to macroscale response of swelling clays using innovative multiscale modeling. Modeling techniques used include molecular dynamics and discrete element modeling. The computational modeling and simulations will be done on the U.S. TeraGrid supercomputer network and at the NDSU Center for High Performance Computing (CHPC).

Source: North Dakota State University

Explore further: New ultrasound device may add in detecting risk for heart attack, stroke

add to favorites email to friend print save as pdf

Related Stories

Computer power clicks with geochemistry

Jan 28, 2014

Sandia National Laboratories is developing computer models that show how radioactive waste interacts with soil and sediments, shedding light on waste disposal and how to keep contamination away from drinking ...

Disordered materials hold promise for better batteries

Jan 09, 2014

Lithium batteries, with their exceptional ability to store power per a given weight, have been a major focus of research to enable use in everything from portable electronics to electric cars. Now researchers ...

BISON enables complex nuclear fuel modeling, simulation

Sep 30, 2013

It's rare that a chipped nuclear fuel pellet makes its way into a reactor. But if one of the millions of pencil-sized pellets does have a small defect, it can affect the fuel's performance. How exactly these ...

Recommended for you

A smart prosthetic knee with in-vivo diagnoses

Apr 22, 2014

The task was to develop intelligent prosthetic joints that, via sensors, are capable of detecting early failure long before a patient suffers. EPFL researchers have taken up the challenge.

User comments : 0

More news stories

Facebook buys fitness app Moves

Facebook has bought the fitness app Moves, which helps users monitor daily physical activity and their calorie counts on a smartphone.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...