Building on Shifting Sands: Professors Study Clay-fluid Interactions

Sep 07, 2006

Clay may make a good modeling toy, but it presents challenges for engineers. Clay likes to swell and clay likes to shrink, challenging engineers to build structures on the equivalent of shifting sands. Two North Dakota State University professors have received $209,922 from the National Science Foundation to study these clay-fluid interactions.

Dinesh Katti, Ph.D., associate dean of research for the College of Engineering and Architecture; and Kalpana Katti, Ph.D., associate professor of civil engineering at NDSU, will conduct the research. The grant supports a three-year project outlined in their proposal titled “Modeling Effect of Molecular Interactions on Evolution of Microstructure and Swelling and Swelling Pressure Responses in Montmorillonite Expansive Clays.”

This research will use quantitative computer modeling to understand molecular interactions between clays and fluids and how it impacts engineering properties—since both are critical to design structures and develop solutions to prevent bridges and roads that buckle or buildings that shift or sink. Such factors are also critical to evaluate the feasible use of these materials for environmental engineering and other engineering applications.

“These interactions play a critical role in the swelling behavior in expansive clays that causes tremendous damage to infrastructure in the United States and around the world,” said Dinesh Katti. “In the United States alone, the annual loss due to these soils is reported to be approximately $7 billion.” In the Red River Valley of eastern North Dakota, clays extend more than 100 feet beneath the soil. Structures in the Valley often stand on hundreds of steel pilings or concrete piers driven through the clays until hitting firmer ground. Other areas such as soils of the Mississippi Delta present similar challenges.

The Kattis’ research is an important step toward the developing micro/nano mechanics of swelling soils. It also quantitatively provides a framework for simulations to study the effect of chemical and biological molecules on swelling and swelling pressure. This will develop innovative and environmentally attractive methods to stabilize swelling clays while retaining good engineering properties, according to Dr. Kalpana Katti.

The project will use a combination of techniques to develop multiscale models of clay-fluid interactions. The goal is to develop an approach to bridge molecular level clay-fluid interactions to macroscale response of swelling clays using innovative multiscale modeling. Modeling techniques used include molecular dynamics and discrete element modeling. The computational modeling and simulations will be done on the U.S. TeraGrid supercomputer network and at the NDSU Center for High Performance Computing (CHPC).

Source: North Dakota State University

Explore further: Circuits on demand: Engineer prints electrical components on paper

add to favorites email to friend print save as pdf

Related Stories

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

How do our cells move? Liquid droplets could explain

May 01, 2014

Living cells move; not just bacteria, but also cells in our own bodies. EPFL scientists have discovered a new relationship between the three-dimensional shape of the cell and its ability to migrate. The work has important ...

Recommended for you

Faradair team determined to make hybrid BEHA fly

8 hours ago

Aiming to transform their concept into a real success, the Faradair team behind a six-seat Bio-Electric-Hybrid-Aircraft (BEHA) have taken this hybrid aircraft project into a crowdfunding campaign on Kickstarter. ...

How polymer banknotes were invented

Nov 26, 2014

The Reserve Bank of Australia (RBA) and CSIRO's 20-year "bank project" resulted in the introduction of the polymer banknote – the first ever of its kind, and the most secure form of currency in the world. ...

Enabling the hearing impaired to locate human speakers

Nov 26, 2014

New wireless microphones systems developed at EPFL should allow the hearing impaired to aurally identify, even with closed eyes, the location of the person speaking. This new technology will be used in classrooms ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.