Nanoscientists Create Biological Switch from Spinach Molecule

Sep 05, 2006
Nanoscientists Create Biological Switch from Spinach Molecule
Scientists used a scanning tunneling microscope to manipulate chlorophyll-a into four positions. Art by: Saw-Wai Hla

Nanoscientists have transformed a molecule of chlorophyll-a from spinach into a complex biological switch that has possible future applications for green energy, technology and medicine.

The study offers the first detailed image of chloropyhll-a – the main ingredient in the photosynthesis process – and shows how scientists can use new technology to manipulate the configuration of the spinach molecule in four different arrangements, report Ohio University physicists Saw-Wai Hla and Violeta Iancu in today’s early edition of the journal Proceedings of the National Academy of Sciences.

The scientists used a scanning tunneling microscope to image chlorophyll-a and then injected it with a single electron to manipulate the molecule into four positions, ranging from straight to curved, at varying speeds. (View a movie here) Though the Ohio University team and others have created two-step molecule switches using scanning tunneling microscope manipulation in the past, the new experiment yields a more complex multi-step switch on the largest organic molecule to date.

The work has immediate implications for basic science research, as the configuration of molecules and proteins impacts biological functions. The study also suggests a novel route for creating nanoscale logic circuits or mechanical switches for future medical, computer technology or green energy applications, said Hla, an associate professor of physics.

“It’s important to understand something about the chlorophyll-a molecule for origin of life and solar energy conversion issues,” he said.

Source: Ohio University

Explore further: Gelatin nanoparticles could deliver drugs to the brain

add to favorites email to friend print save as pdf

Related Stories

New state of liquid crystals discovered

Nov 29, 2013

(Phys.org) —New collaborative research, carried out by Dr. Vitaly P. Panov, Research Fellow, and Jagdish K Vij, Honorary Professor of Electronic Materials of Trinity College Dublin's School of Engineering, ...

Recommended for you

'Mind the gap' between atomically thin materials

Dec 24, 2014

When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.