High-Flying Balloons Track Hurricane Formation

Aug 31, 2006
High-Flying Balloons Track Hurricane Formation
A hurricane-tracking driftsonde shimmers during a sunrise test. Credit: NCAR

The eastern tropical Atlantic Ocean is out of range for U.S. hurricane-hunter aircraft, and forecasters have little skill predicting which systems brewing there will develop into hurricanes, atmospheric scientists say. So, to find out how some of the most dangerous hurricanes form, U.S. and French researchers are launching large, specialized balloons carrying nearly 300 instruments over wide swaths of Africa and the Atlantic Ocean.

The first launch of a balloon with its instruments, called a driftsonde, took place at Zinder, Niger, on Aug. 28. Some seven more driftsondes will be released from Zinder through late September, coinciding with the peak period of hurricane formation over the tropical Atlantic.

"Data from the driftsondes should help characterize the conditions that either foster or suppress hurricane formation," said the National Science Foundation's (NSF) Cliff Jacobs, who oversees support for the National Center for Atmospheric Research (NCAR) in Boulder, Colo.

Scientists and engineers at NCAR and the French space agency, CNES, developed the driftsondes. The research was funded by NSF, NCAR's primary sponsor, and the National Oceanic and Atmospheric Administration.

Each balloon will drift from Africa toward the Caribbean at heights of around 65,000-70,000 feet, where light easterly winds prevail. Twice a day, each balloon will release an instrument known as a dropsonde that falls by parachute, sensing the weather conditions during its 20-minute descent and sending data back to the balloon and then to the researchers by satellite.

Scientists will control the process from an operations center in Paris. If a weather system develops, they can signal the balloon to release additional dropsondes as often as once per hour.

The Niger site was selected to study weak weather systems, called easterly waves, that serve as seedlings of hurricanes. Dozens of these waves move across Africa into the Atlantic between about 10 and 20 degrees North. A small number develop into tropical storms and hurricanes, some of which reach the U.S. Atlantic and Gulf coasts.

"The driftsondes will provide unique data on the conditions that lead to Atlantic hurricanes," said NCAR scientist David Parsons, U.S. coordinator for the project. "They float at a speed close to the movement of the easterly waves, so we can stay above those waves and monitor them from their earliest stages."

To build the driftsonde system, scientists, engineers, and machinists had to overcome many hurdles. Each driftsonde had to be robust enough to endure days of extreme stratospheric cold (averaging minus-80 degrees Fahrenheit) as well as the intense sunlight of the high, thin atmosphere.

For the balloon deployment to be affordable and practical, the system also required low-cost, lightweight, off-the-shelf instruments capable of operating reliably in low pressure and in temperature extremes with very low power.

Because of their flexible and relatively inexpensive nature, scientists believe, driftsondes may soon become a popular way to monitor and study many types of weather across the world's oceans and other remote regions.

Source: NSF

Explore further: NASA's HS3 looks Hurricane Edouard in the eye

add to favorites email to friend print save as pdf

Related Stories

Prediction of major hurricanes lowered

Aug 04, 2007

The United States' leading storm forecaster has slightly lowered the number of hurricanes expected to form in the Atlantic basin this year.

Dusty Hurricanes

Apr 16, 2007

Throw gasoline on a fire, and the flames swell to a raging inferno. Throw dirt on a fire, and the flames suffocate. But what happens when you throw dirt on a hurricane? It's a serious question.

NASA Researchers Studying Tropical Cyclones

Jun 23, 2005

NASA hurricane researchers are deploying to Costa Rica next month to investigate the birthplace of eastern Pacific tropical cyclones. They will be searching for clues that could lead to a greater understanding and better ...

Recommended for you

NASA's HS3 looks Hurricane Edouard in the eye

3 hours ago

NASA and NOAA scientists participating in NASA's Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted ...

Tropical Storm Rachel dwarfed by developing system 90E

8 hours ago

Tropical Storm Rachel is spinning down west of Mexico's Baja California, and another tropical low pressure area developing off the coast of southwestern Mexico dwarfs the tropical storm. NOAA's GOES-West ...

NASA ocean data shows 'climate dance' of plankton

11 hours ago

The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants ...

Glaciers in the grand canyon of Mars?

12 hours ago

For decades, planetary geologists have speculated that glaciers might once have crept through Valles Marineris, the 2000-mile-long chasm that constitutes the Grand Canyon of Mars. Using satellite images, ...

NASA support key to glacier mapping efforts

12 hours ago

Thanks in part to support from NASA and the National Science Foundation, scientists have produced the first-ever detailed maps of bedrock beneath glaciers in Greenland and Antarctica. This new data will help ...

User comments : 0