More Details in the Nanocosmos of the Cell

Aug 18, 2006
More Details in the Nanocosmos of the Cell
A look at the inside of cells becomes sharper: Both figures above show the filaments in a human nerve cell; left with a common confocal microscope, right with a STED microscope plus mathematical deconvolution. The resolution of the STED microscope is better by more than an order of magnitude. Image: MPI für biophysikalische Chemie

Scientists at the Max Planck Institute for Biophysical Chemistry have further opened the door to the nanocosmos of the cell. The researchers have, for the first time, improved the resolution of STED microscopes (Stimulated Emission Depletion) to 15 nanometers.

Already in April, they achieved a detail sharpness of 60nm in cells with the microscopes whose principle was developed by them only a few years ago. The scientists can now image more details than before from the inside of a cell as they have further decreased the effective focal spot of the STED microscope. The required intensive light for this purpose can be used only because a new trick prevents the fluorescent dyes from extensive bleaching.

How viruses infect a cell, how nerve cells transport signals or how proteins work - the nanocosmos of nature remains hidden to the human eye. However, in order to still be able to perceive the seemingly invisible, we need to enlarge the object - for example, with a fluorescence microscope. Fluorescent markers are attached to proteins and other biomolecules so that scientists can observe the marker. For a long time, low resolution prevented a deeper look into the function of proteins - single proteins with their dimension of 2-20 nanometers diameter were, until now, just too small.

Scientists at the Max Planck Institute for Biophysical Chemistry in Göttingen have now achieved a resolution of up to 15nm with their STED microscope (Stimulated Emission Depletion). Their fluorescence microscope is thereby twelve times sharper than a conventional one. Already in April, the team of scientists lead by Professor Stefan Hell achieved a detail sharpness of up to 60 nanometers in cells.

Only a few years ago, physicists believed that it was impossible to resolve details that lie closer together than 200 nanometers . This limit is imposed by Abbe’s Law, whereby the resolution of a light microscope cannot be more accurate than half of the wavelength of light entering the microscope.

Hell and his co-workers have overcome this limit with a trick. They excite the fluorescence dyes that have been attached to the proteins with a blue light beam. The size of the spot from this beam though cannot be made sharper than 200 nanometers, as governed by Abbe’s Law. However, before the excited molecules in the light spot can fluoresce, the molecules in the outer section of the light spot are forced to relax. To this effect, they overlap a second ring-shaped light beam, the STED beam, over the excitation spot. This now means that only those molecules in the clearly smaller spot in the center of the light ring remain excited and can therefore finally glow.

The more intense the STED beam, the smaller is the spot in which the molecules can still fluoresce. The resolution is also therefore better. However, the fluorescing dye molecules also bleach faster in an intense light beam and one sees - nothing. The Göttingen-based scientists discovered that the fluorescing molecules bleach for the most part because they are continually transferred for a microsecond into a further dark state: physicists speak of a triplet state. For a molecule in this state, when hit by a light particle, it would be irreversibly bleached. The solution to the problem is to irradiate the molecule with a light pulse that allows 4 microseconds between the pulses - enough time for the molecules to return from the dark state. Subsequently, the molecules are available once again for excitation and relaxation.

"The full potential of the STED technique has still not been fully exploited," according to Professor Hell. Resolution of the size order of a dye molecule is imaginable - this corresponds to a sharpness of one or two nanometers. Fluorescence microscopy is most often used in biology. Its advantage lies in the fact that the inside of living cells can be observed without destroying the cell. With their STED technique, the scientists in Göttingen have already shown how the protein Bruchpilot is spatially concentrated in synapses, and how it triggers the building of active synaptic zones at which the nerve cell selectively releases neurotransmitter. Furthermore, they explored how, during synapse, the released proteins assemble at the presynaptic membrane.

Citation: Donnert, G., J. Keller, R.Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell (2006), "Macromolecular-scale resolutio in biological fluorescence microscopy", Proc. Natl. Acad. Soc. USA 130 (31) : 11440-11445

Source: Max Planck Institute for Biophysical Chemistry

Explore further: Introducing the multi-tasking nanoparticle

add to favorites email to friend print save as pdf

Related Stories

Fear not the Moon, Perseids always a great show

Aug 11, 2014

Get ready for the darling of meteor showers this week—the Perseids. Who can deny their appeal? Not only is the shower rich with fiery flashes of meteoric light, but the meteors come in August when the weather's ...

Fingers crossed as comet-chaser nears end of trek

Aug 06, 2014

European scientists were preparing for a historic rendezvous on Wednesday between a comet and a space probe after a 10-year, six billion-kilometre (3.7-billion-mile) chase through the Solar System.

SHERLOC to micro-map Mars minerals and carbon rings

Aug 01, 2014

(Phys.org) —An ultraviolet-light instrument on the robotic arm of NASA's Mars 2020 rover will use two types of ultraviolet-light spectroscopy, plus a versatile camera, to help meet the mission's ambitious ...

Titan offers clues to atmospheres of hazy planets

Jul 28, 2014

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Recommended for you

Introducing the multi-tasking nanoparticle

15 hours ago

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

User comments : 0