Physicists make first 'molecular movie' of light

Aug 10, 2006
Physicists make first ‘molecular movie’ of light
Femtosecond x-ray pulses are used to detect the ultra-fast motion of charged atoms in a THz light field. Credit: University of Oxford

Scientists have made the first ‘molecular movie’ of the elementary interaction between light and matter. They measured what happens on a microscopic level when light travels through a medium in a collaborative project involving Oxford University, the Lawrence Berkeley Laboratory in California, and the Massachusetts Institute of Technology.

The lead author of the study published in Nature, Dr Andrea Cavalleri at the Oxford University Department of Physics, said: ‘We’ve all seen how a stick in a pond appears to be at a different angle depending on whether we look at it from outside or inside the water. At a microscopic level, this effect depends on how stiff atomic bonds are, and with how much delay atoms and electrons respond when they are placed in the rapidly wiggling electric field of light.

‘If you want to understand the propagation of light at microscopic level, especially in some the complex materials that are of interest for modern opto-electronic applications, you need to make a ‘molecular movie’ of how the atoms and electrons wiggle in the light field. To do so, you need to find a camera with an extremely quick shutter speed – that of a handful of femtoseconds (which is less than one thousandth of a billionth of a second).

‘This very fast timescale can be reached with modern laser technology – but lasers can’t see where the constituents atoms actually are. If you want to see this ‘shape’ of a molecule you need x-rays, but there are currently no x++-ray beams with short enough pulses to take snapshots of atomic motions.

‘What we have managed to do is combine ultra-fast laser pulses with electron beams in a particle accelerator, deflecting a small slice of the long electron pulse on a separate orbit of the accelerator. Thus, these electrons radiated short enough x-ray pulses to measure elementary atomic motions on the femtosecond timescale. This enabled us to measure the motion of charged atoms on the ultra-fast timescale with an accuracy of less than one thousandth of one billionth of a meter. This means we are capable of resolving in time the displacements of atoms by less than one atomic nucleus.

‘This technology can now be applied to other elementary processes at the microscopic level, and we can measure their displacements with unprecedented speed and resolution.’

Source: University of Oxford

Explore further: Researchers find first direct evidence of 'spin symmetry' in atoms

add to favorites email to friend print save as pdf

Related Stories

Laser makes microscopes way cooler

Aug 15, 2014

(Phys.org) —Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus.

Molecular engineers record an electron's quantum behavior

Aug 14, 2014

A team of researchers led by the University of Chicago has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique ...

Antineutrino detectors could aid non-proliferation

Aug 12, 2014

Physicists at the Large Hadron Collider in Switzerland and even in the fictional world of CBS' "The Big Bang Theory" look to subatomic particles called neutrinos to answer the big questions about the universe.

Recommended for you

Water window imaging opportunity

3 hours ago

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0