Pre-life molecules present in comets

Jul 26, 2006

Evidence of atomic nitrogen in interstellar gas clouds suggests that pre-life molecules may be present in comets, a discovery that gives a clue about the early conditions that gave rise to life, according to researchers from the University of Michigan and the Harvard-Smithsonian Center for Astrophysics.

The finding also substantially changes the understanding of chemistry in space.

The question of why molecular nitrogen hasn't been detected in comets and meteorites has puzzled scientists for years. Because comets are born in the cold, dark, outer reaches of the solar system they are believed to be the least chemically altered during the formation of the Sun and its planets.

Studies of comets are thought to provide a "fossil" record of the conditions that existed within the gas cloud that collapsed to form the solar system a little more than 4.6 billion years ago. In this cloud, since nitrogen was thought to be in molecular form, and it follows that comets should contain molecular nitrogen as well.

But the reason it isn't there is because it isn't present in the gas clouds whose microscopic solid particles eventually form comets, said Sйbastien Maret, research fellow in astronomy at the University of Michigan, and Edwin Bergin, a professor of astronomy at the University of Michigan. Those clouds contain mostly atomic nitrogen, not molecular nitrogen, as previously thought.

Maret, Bergin, and collaborators from Harvard-Smithsonian Center for Astrophysics will publish their findings in the July 27 issue of the journal Nature.

The nitrogen bearing molecules in comets that crashed into Earth millions of years ago may have provided a sort of "pre-biotic jump start" to form the complex molecules that eventually led to life here, Bergin said.

"A lot of complex and simple biotic molecules have nitrogen and it's much easier to make complex molecules from atomic nitrogen," Bergin said. "All DNA bases have atomic nitrogen in them, amino acids also have atomic nitrogen in them. By that statement what we're saying is if you have nitrogen in its simplest form, the atomic form, it's much more reactive and can more easily form complex prebiotic organics in space". These complex organics were incorporated into comets and were provided to the Earth.

"What we're seeing in space is telling us something about how you make molecules that led to us," Bergin said.

Also of importance is the fact that odd anomalies in isotopic values in meteorites can also be explained if the nitrogen is not molecular, Bergin said.

Source: University of Michigan

Explore further: Image: Galactic wheel of life shines in infrared

add to favorites email to friend print save as pdf

Related Stories

The origin of Uranus and Neptune elucidated?

Sep 24, 2014

A team of French-American researchers led by the UTINAM Institute (CNRS/Université de Franche-Comté) has just proposed a solution to the problematic chemical composition of Uranus and Neptune, thus providing ...

Solar system simulation reveals planetary mystery

Sep 08, 2014

When we look at the Solar System, what clues show us how it formed? We can see pieces of its formation in asteroids, comets and other small bodies that cluster on the fringes of our neighborhood (and sometimes, ...

How Titan's haze help us understand life's origins

Aug 25, 2014

Where did life on Earth come from? There are several theories as to what might have happened. Maybe comets came bearing organic material, or life was transported from another planet such as Mars, or something ...

Recommended for you

Image: Galactic wheel of life shines in infrared

Oct 24, 2014

It might look like a spoked wheel or even a "Chakram" weapon wielded by warriors like "Xena," from the fictional TV show, but this ringed galaxy is actually a vast place of stellar life. A newly released ...

New window on the early Universe

Oct 22, 2014

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

User comments : 0