Carbon nanotubes offer 'green' technology for perchlorate removal

Jul 25, 2006
Carbon nanotubes offer 'green' technology for perchlorate removal
Schematic illustration of the PNNL perchlorate removal process. The technology also can be used to capture cesium and chromium.

Researchers at Pacific Northwest National Laboratory have demonstrated a new, environmentally friendly process for treating water contaminated by perchlorate, a toxic chemical that has been found in drinking water in 35 states.

Perchlorate is used in rocket fuel, fireworks and defense manufacturing, and groundwater contaminated by the chemical is difficult to treat. High levels of perchlorate have been associated with thyroid disease, plus the possibility of cancer and other health problems. Contamination is especially widespread in California, where there are many U.S. military bases.

The conventional method for treating perchlorate-contaminated water employs an ion exchange resin. Regenerating the resin requires flushing with an acidic solution, which results in large quantities of secondary waste.

The PNNL method is an electrically controlled anion exchange process. “The technology is unique in that it uses an electric current to regenerate the resin and release the perchlorate without producing a lot of secondary waste,” said Yuehe Lin, lead scientist for the research, adding that the process is “green” because it produces so little waste.

The technology is available for licensing and joint research opportunities through Battelle, which operates PNNL for the Department of Energy and facilitates the transfer of lab-created technologies to the marketplace.

To create the new process, Lin and his colleagues induced a positive charge to an electrically conducting polymer, such as a polypyrrole, that selectively attracts the negatively charged perchlorate ions. Application of an electric current releases the trapped perchlorate ions for disposal. Now neutral, the polymer can be reverted to a positively charged surface and re-used.

The scientists increased the amount of perchlorate that can be captured by depositing the polymer as a polypyrrole thin film on a matrix of carbon nanotubes, creating a porous conductive nanocomposite.

“The high surface area of the carbon nanotubes provides an ideal matrix for the polymer,” Lin said, noting that the polymer is electrodeposited on the carbon nanotubes through in situ polymerization.

The porous surface created by the carbon nanotubes also gives the technology a longer life cycle because the polymer is more stable on the nanotube matrix than it would be on a flat, conducting substrate.

The electrically controlled anion exchange technology can be used to remove other contaminants, such as cesium and chromium. A radioactive material common to nuclear waste sites, cesium could be used by terrorists to build dirty bombs or contaminate drinking water. Chromate is a toxic form of chromium that is readily absorbed by the body.

Source: PNNL

Explore further: New type of barcode could make counterfeiters' lives more difficult

add to favorites email to friend print save as pdf

Related Stories

Mars Icebreaker Life mission

May 16, 2013

Missions to Mars have only scratched its surface. To go deeper, scientists are proposing a spacecraft that can drill into the Red Planet to potentially find signs of life.

Curiosity rover: No big surprise in first soil test

Dec 03, 2012

(Phys.org)—NASA's Mars Curiosity rover has used its full array of instruments to analyze Martian soil for the first time, and found a complex chemistry within the Martian soil. Water and sulfur and chlorine-containing ...

Toxic chromium found in Chicago's drinking water

Aug 08, 2011

Chicago's first round of testing for a toxic metal called hexavalent chromium found that levels in local drinking water are more than 11 times higher than a health standard California adopted last month.

Recommended for you

Making 'bucky-balls' in spin-out's sights

7 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...