Gemini Captures Close Encounter of Jupiter's Red Spots

Jul 25, 2006
Gemini Captures Close Encounter of Jupiter's Red Spots
In this colour composite image, white indicates cloud features at relatively high altitudes; blue indicates lower cloud structures; and red represents still deeper cloud features. The two Red Spots appear more white than red, because their tops hover high above the surrounding clouds. Also prominent is the polar stratospheric haze, which makes Jupiter bright near the pole (unlike the other orange/red features in this image, the polar haze is high in Jupiter's atmosphere). Other tiny white spots are regions of high cloud, like towering thunderheads. In visible light Jupiter looks orangish, but in the near-infrared the blue colour is due to strong absorption features. The blue mid-level clouds are also closest to what one would see in a visual light image.

A high-resolution image just released by the Gemini Observatory shows two giant red spots brushing past one another in Jupiter's southern hemisphere.

The image was obtained in near infrared light using adaptive optics which removed most of the distortions caused by turbulence in Earth's atmosphere. The result is a view from the ground that rivals images from space.

"It was tricky getting this picture," said Gemini astronomer Chad Trujillo who helped lead the effort to capture the image. "Since we used adaptive optics we needed a star-like object nearby to guide on, so we had to find a time when Jupiter's moon Io would appear close enough to Jupiter and the red spots would be optimally placed on Jupiter's disk. Fortunately it all worked out on the evening of July 13th and we were able to capture this relatively rare set of circumstances," said Trujillo.

Professor Steve Miller of University College London is a keen Jupiter-watcher and said The latest images from Gemini are truly amazing in the detail that they show of these two major storm systems on Jupiter. It is now clear that they are lined up more or less "on top" of each other, with the smaller storm further south, closer to the South Pole.

Both red spots are massive storm systems. The larger one, known for a long time as the Great Red Spot, lies about 8 kilometres (5 miles) above the neighbouring cloud tops and is the largest hurricane known in the solar system. The smaller storm (officially called Oval BA, but informally known as Red Spot Junior) is another hurricane-like system. Since it appears nearly as bright as the Great Red Spot in near-infrared images, Red Spot Junior may be at a similar height in the Jovian atmosphere as the Great Red Spot.

Prof Miller added We have known for some time that the Great Red Spot is at least three hundred and fifty years old. But the last decade has quite literally seen the birth of another enormous storm - known affectionately as Red Spot Junior - so large that it would completely engulf the Earth. This storm has formed by the merger of three smaller storms. When Red Spot Junior was first noticed it was lagging behind the Great Red Spot by about 90 degrees of Jovian longitude. Since Jupiter takes ten hours to rotate on its axis - a Jovian day is 9 hours 54 minutes - you could say that Red Spot Junior was two and a half hours behind the Great Red Spot.

But the latest Gemini images show that Junior has caught up with the Great Red Spot, and it will overtake it over the coming weeks and months. That is clear proof of the way that different parts of Jupiter's atmosphere are rotating at very different speeds, generating huge wind-shears.

Red Spot Junior is roughly half the size of its famous cousin, but its winds blow just as strong. This mighty new storm formed between 1998 and 2000 from the merger of three long-enduring white ovals, each a similar storm system at a smaller scale, which had been observed for at least 60 years. But it was not until February 27th of this year that Philippine amateur astronomer Christopher Go discovered that the colour of the newly formed white oval had turned brick red. Astronomers were witnessing the birth of a new red spot.

No one is certain why this white oval turned red. However, University of Hawaii astronomer Toby Owen supports a hypothesis developed by New Mexico State University astronomer Rita Beebe, who suggests that the merger of the three white ovals led to an intensified storm system. This made it strong enough to dredge up reddish material from deeper depths in the atmosphere. As this material wells up in the middle of the spot, it becomes contained (or protected) from escape by the strong circulating currents at the spot's edges. "What's frustrating is that we don't know what that reddish material is," Owen said. "But it appears the ability to dredge it up depends on the size of these oval storm systems."

Another popular hypothesis contends that the material dredged up from below Jupiter's visible clouds climbs to an altitude where the Sun's ultraviolet light chemically alters it to give it a reddish hue.

Each red spot is rotating with Jupiter at slightly different rates and over time, like passing cars on a highway, the two spots change relative positions causing periodic close passages like this. However, this is the first such passage since the new, smaller red spot intensified and turned red. A recent optical image from the Hubble Space Telescope was obtained in April of this year when the two spots were still separated by a considerable distance.

Full-Resolution JPEG | 164kb

Source: PPARC

Explore further: Planck: Gravitational waves remain elusive

add to favorites email to friend print save as pdf

Related Stories

Some of the best pictures of the planets in our solar system

Jan 19, 2015

Our Solar System is a pretty picturesque place. Between the Sun, the Moon, and the Inner and Outer Solar System, there is no shortage of wondrous things to behold. But arguably, it is the eight planets that make up our Solar ...

Extrasolar storms: How's the weather way out there?

Jan 13, 2015

Orbiting the Earth 353 miles above the ground, the Hubble Space Telescope silently pivots toward its new target. At the same time, flying 93 million miles away in interplanetary space, NASA's Spitzer Space ...

Image: Jupiter's bands of bronze

Dec 08, 2014

This Cassini image shows Jupiter from an unusual perspective. If you were to float just beneath the giant planet and look directly up, you would be greeted with this striking sight: red, bronze and white ...

Astronomers thrilled by extreme storms on Uranus

Nov 12, 2014

The normally bland face of Uranus has become increasingly stormy, with enormous cloud systems so bright that for the first time ever, amateur astronomers are able to see details in the planet's hazy blue-green ...

Recommended for you

Planck: Gravitational waves remain elusive

Jan 30, 2015

Despite earlier reports of a possible detection, a joint analysis of data from ESA's Planck satellite and the ground-based BICEP2 and Keck Array experiments has found no conclusive evidence of primordial ...

What's happening in the universe right now?

Jan 30, 2015

There are some topics that get a little frustrating in their pedantry, but can really draw attention to the grand scope and mechanics in our Universe. This is definitely one of them.

The tell-tale signs of a galactic merger

Jan 29, 2015

The NASA/ESA Hubble Space Telescope has captured this striking view of spiral galaxy NGC 7714. This galaxy has drifted too close to another nearby galaxy and the dramatic interaction has twisted its spiral ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.