Scientists Gaining Clearer Picture of Comet Makeup and Origin

Jul 17, 2006
Deep Impact's Impactor Meets Tempel 1 Comet

Scientists are getting their best understanding yet of the makeup of comets – not only of the materials inside these planetary building blocks, but also of the way they could have formed around the Sun in the solar system’s earliest years.

When NASA’s Deep Impact spacecraft slammed into comet Tempel 1 on July 4, 2005, the collision sent tons of pristine materials into space and gave astronomers from around the world, using ground- and space-based telescopes, the first look “inside” a comet. From that sample, over the past several months, scientists who used the imaging spectrometer on NASA’s Spitzer Space Telescope have refined their models of what a comet is made of and how it comes together.

The Spitzer observation team, led by Dr. Carey Lisse of the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., wrote about its findings last week on the Science Express Web site.

“Spitzer’s spectral observations of the impact at Tempel 1 not only gave us a much better understanding of a comet’s makeup, but we now know more about the environment in the solar system at the time this comet was formed,” Lisse says.

From its orbit in space, Spitzer’s infrared spectrograph closely observed the materials ejected from Tempel 1 when Deep Impact's probe dove into the comet’s surface. Astronomers spotted the signatures of solid chemicals never seen before in comets, such as carbonates (chalk) and smectite (clay), metal sulfides (like Fool’s Gold), and carbon-containing molecules called polycyclic aromatic hydrocarbons, found in barbecue grills or automobile exhaust on Earth.

Lisse says the clay and carbonates were surprises because they typically require liquid water to make – and liquid water isn’t found in the regions of deep space where comets form. Also surprising was the superabundance of crystalline silicates, material formed only at red-hot temperatures found inside the orbit of Mercury.

"In the same body, you have material formed in the inner solar system, where water can be liquid, and frozen material from out by Uranus and Neptune,” Lisse says. “Except for the lightest elements, the total abundances of atoms in the comet are practically the same as makes up the Sun. It implies there was a great deal of churning in the primordial solar system, with high- and low-temperature materials mixing over great distances."

Planets, comets and asteroids were all born out of a thick and dusty mix of chemicals that surrounded the young Sun. Because comets formed in the outer, colder regions of our solar system, some of this early planetary material remains frozen inside them. By refining their list of comet ingredients, theoreticians can begin testing models of planet formation.

More than 80 telescopes on and above Earth observed Deep Impact's rendezvous with Tempel 1, and their findings are shedding light on the comet’s broader history in the solar system. Lisse’s team is also comparing Spitzer’s discoveries with those from NASA's Stardust mission, which last January returned particles from the coma (or atmosphere) of comet Wild 2 back to Earth.

“We can compare the inferred composition of Tempel 1 to the Stardust sample returns and obtain a ‘ground truth,’ ” Lisse says. “From this we can create a Rosetta stone, which we’ll use to better understand the materials seen in our own solar system as well as around other stars.”

Twelve of the 14 species found by Spitzer match up with preliminary Stardust analyses, Lisse says, but several mysteries remain. For example, the Stardust samples do not yet include definitive evidence of the carbonate and clay minerals found in Tempel 1.

“There’s no reason to think Tempel 1 represents all comets,” he says. “Deep Impact only hit and excavated Tempel 1 in one precise location, and Stardust only sampled the surface of one comet at one point in its orbit. We'll need additional missions to comets – such as robotic landing spacecraft or sample-return probes – to help us complete the picture.”

NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center. Spitzer's infrared array camera was built by NASA's Goddard Space Flight Center, Greenbelt, Md.

Source: Johns Hopkins University

Explore further: Grad student's aTmCam offers cosmic insight for dark energy survey

add to favorites email to friend print save as pdf

Related Stories

Deep Impact mission ends, leaves bright comet tale

Sep 20, 2013

(Phys.org) —NASA today announced the end of operations for the Deep Impact spacecraft, history's most traveled deep-space comet hunter, after trying unsuccessfully for more than a month to regain contact ...

Deep Impact spacecraft completes rocket burn

Oct 05, 2012

(Phys.org)—NASA's Deep Impact spacecraft completed a firing of its onboard rocket motors earlier today. The maneuver began at 1 p.m. PDT (4 p.m. EDT), lasted 71 seconds, and changed its velocity by 4.5 ...

Stardust spacecraft adjusts flight path for comet meetup

Feb 02, 2011

(PhysOrg.com) -- Just over two weeks before its flyby of comet Tempel 1, NASA's Stardust spacecraft fired its thrusters to help refine its flight path toward the comet. The Stardust-NExT mission will fly past ...

Celebrating a decade of the Submillimeter Array

Jun 25, 2014

(Phys.org) —Ten years ago, eight antennas on the summit of Mauna Kea, Hawai'i, united to form a telescope unlike any other. Since then the Submillimeter Array (SMA) has examined the universe in unprecedented ...

Recommended for you

Possible bright supernova lights up spiral galaxy M61

3 hours ago

I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible ...

Fifteen years of NASA's Chandra X-ray observatory

4 hours ago

This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours.

Confirming a 3-D structural view of a quasar outflow

4 hours ago

A team of astronomers have observed a distant gravitationally-lensed quasar (i.e., an active galactic nucleus) with the Subaru Telescope and concluded that the data indeed present a 3-D view of the structure ...

Hubble sees 'ghost light' from dead galaxies

19 hours ago

(Phys.org) —NASA's Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened ...

When did galaxies settle down?

Oct 30, 2014

Astronomers have long sought to understand exactly how the universe evolved from its earliest history to the cosmos we see around us in the present day. In particular, the way that galaxies form and develop ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.