Nano World: Nanomagnets in chips, antenna

Jul 05, 2006

Magnetic particles only nanometers or billionths of a meter wide promise to help electronics continue to pack ever closer together for more powerful microchips and other devices, experts told UPI's Nano World.

These nanoparticles could help shrink the magnetic elements in electronics by ten-fold or more, explained William Crossman, chief operating officer of Embedded Nanomagnetics in Farmington, Conn. The company, which is getting spun out from nanomaterials firm Inframat within the next month, already has strategic partnerships based on its nanotechnology enhanced magnetic elements with an electronics industry giant, a leading cell phone manufacturer, and two head aerospace defense contractors, he added.

The potential market for these novel magnetic elements "is in the billions of dollars," Crossman said.

Computers have steadily advanced in power for decades, with the microchip industry doubling transistor density every two years for the last 30 years, a trend dubbed Moore's Law after Intel cofounder Gordon Moore.

"The problem is magnetic elements, which are in virtually all electronics, have not obeyed Moore's Law, reducing the ability to shrink electronics. The magnetics are often the biggest, heaviest, clunkiest, hottest, least efficient pieces in electronics," Crossman said.

The "secret sauce" of the company's technology is made of magnetic particles 20 to 50 nanometers in diameter packed in an insulating polymer matrix, developed over roughly six years by Inframat with $6 million in funding from a combination of government sources, including the National Science Foundation, the U.S. Air Force and NASA.

The polymer matrix helps keep the nanoparticles from clumping, while at the same time keeping them close enough together at roughly 25 nanometers distance for a quantum effect called exchange coupling to occur. This helps the magnetic fields of the nanoparticles align, resulting in more efficient magnets.

Magnetic nanomaterials could "have tremendous impact on all electronic applications -- computing, wireless, defense, space and biomedical related," said materials engineer P. Markondeya Raj at the Georgia Institute of Technology in Atlanta. "The new magnetic nanomaterials developed by Inframat enable smaller components," he added, that can now be integrated easily into devices instead of manufacturing them separately and mounting them, "leading to bulky and low performance systems of today."

Using their initial nickel zinc ferrite magnetic nanoparticle-based paste, due to come out in six months to a year, "you can reduce the size and weight of magnetic elements in electronics by one-seventh to one-tenth of a conventional magnetic element and have equivalent effectiveness and greater efficiency," Crossman said.

Cobalt silicate nanoparticle-based thin films the company is developing could potentially have 100-fold improvement over conventional magnetics, Crossman added. The company anticipates one or more licenses on their technology within the next 24 months.

Copyright 2006 by United Press International

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

This hard drive is hardened to disasters

Mar 04, 2009

Anyone who has been reading my column or listening to my radio talk show "Computer America" knows I have been preaching the back-up mantra for years. If I ever decide to have a bumper sticker on my car, it will read: "It's ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...