Securing America's power grid

Jun 27, 2006

Terrorists attack Colombia's electrical grid hundreds of times a year. What's to stop attacks on America's power lines? An Iowa State University research team led by Arun Somani, chair and Jerry R. Junkins professor of electrical and computer engineering, is working to develop a network of wireless sensors that could monitor the country's electricity transmission system.

While the sensors could pick up suspicious activity at power poles, they'd be especially useful at quickly locating any breakdowns. That could allow power companies to react in time to prevent power disruptions from cascading into blackouts. And the monitoring system could also help power companies quickly locate problems when severe weather tears down electrical lines.

With networks of sensors, "Power companies would have additional abilities to view their systems and that would assist in disaster recovery," Somani said.

America has a lot of transmission lines, substations and generators that could use some monitoring. The Department of Energy reported the country had 157,810 miles of transmission lines in 2004. And the department reported that America's power plants produced 3.97 billion megawatt hours of electricity in 2004.

The monitoring system depends on sensors housed in black boxes just a few inches across. Somani recently picked up one of the sensors inside Iowa State's Wireless and Sensor Networking Laboratory and showed off the electronics capable of watching out for conductor failures, tower collapses, hot spots and other extreme conditions. A tiny camera can also be mounted in the sensor to look for suspicious movements around power lines.

The project is supported by a $400,000 grant from the National Science Foundation and $150,000 from Iowa State's Information Infrastructure Institute.

The project's Iowa State research team also includes Manimaran Govindarasu, an associate professor of electrical and computer engineering; Murti Salapaka, an associate professor of electrical and computer engineering; and Zhengdao Wang, an assistant professor of electrical and computer engineering. Former Iowa State faculty member Vijay Vittal, now a professor of electrical engineering at Arizona State University, is also working on the project. Each of the researchers brings different specialties to the project.

And it's not an easy project, Somani said.

The researchers need to design a system that stands up to weather. They need to design sensors that can accurately monitor the power grid's electrical and mechanical characteristics. They need to find a way to monitor the area around electrical equipment for suspicious activity. They need to develop wireless communication networks so the sensors can send comprehensive data from far-flung areas to control centers. They need to design a diagnosis algorithm to accurately determine fault conditions and predict faults. They need to design a decision algorithm to reconfigure the power network to prevent or alleviate cascading failures. And they need to find ways to get electricity to the sensors because the electrical lines they're monitoring carry the wrong kind of power.

Somani said the researchers are making good progress on developing a prototype system. He said the research team is also starting to talk to power companies about the possibility of testing the system on the electrical grid. And he said it's an important project for national security.

"With the increasing threat of terrorism around the world, more attention is being paid to the security of the transmission infrastructure," says a summary of the project. "Experiences in countries like Columbia, which has faced as many as 200 terrorist attacks on its transmission infrastructure per year, demonstrate the vulnerability of the power system to these kinds of events."

Source: Iowa State University

Explore further: Tiny UAVs and hummingbirds are put to test

add to favorites email to friend print save as pdf

Related Stories

Ladybird puts field robotics on award-winning level

Jul 02, 2014

Mention a farming robot and one might think of a machine only designed to do the fundamental physical tasks of lifting, picking, sorting. A robotics expert at the University of Sydney has been working on ...

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

Getting a charge out of water droplets

Jul 11, 2014

Last year, MIT researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that ...

Samsung looks on as profits migrate to online ecosystems

Jul 09, 2014

There used to be a time when the launch of a Galaxy handset, a Macbook, or a fancy game console could set investor hearts on fire and firms on a path to untold riches. These days, new devices no longer have ...

Recommended for you

Tiny UAVs and hummingbirds are put to test

7 hours ago

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

Printing the metals of the future

Jul 29, 2014

3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need ...

User comments : 0