Genetic Engineering Fuses Spider Silk and Silica

Jun 27, 2006

Bioengineers at Tufts University have created a new fusion protein that for the first time combines the toughness of spider silk with the intricate structure of silica. The resulting nanocomposite could be used in medical and industrial applications, such as growing bone tissue.

“This is a novel genetic engineering strategy to design and develop new ‘chimeric’ materials by combining two of nature’s most remarkable materials -- spider silk and diatom glassy skeletons – that normally are not found together,” said David L. Kaplan, professor and chair of biomedical engineering and director of Tufts’ Bioengineering and Biotechnology Center.

Kaplan, along with his Tufts graduate students and collaborators Carol C. Perry from Nottingham Trent University in England and Rajesh Naik from the Air Force Research Laboratory, released their findings in the paper “Novel Nanocomposites from Spider Silk-Silica Fusion (Chimeric) Proteins” published in the Proceedings of the National Academy of Sciences.

Silica provides structural support to diatoms (single-celled organisms known for their remarkable nanostructural details) while silk proteins from spiders and silkworms are more flexible, stronger and able to self-assemble into readily defined structures. The Tufts researchers were able to design and clone genetic fusions of the encoding genes for these two proteins, and then generate these genetically engineered proteins into nanocomposites at ambient temperatures using only water. In contrast, high temperatures and harsh conditions are typically required by geochemical and industrial synthesis of silica in the laboratory.

Another remarkable detail about the spider silk-silica composite is its size. While past tests using silica have formed silica particles with a diameter between 0.5 and 10 nanometers, the silk-glass composite has a diameter size distribution between 0.5 and 2 nanometers. The smaller, more uniform size will provide better control and more options for processing, which would be “important benefits for biomedical and specialty materials,” according to the research.

Kaplan says this new chimeric protein could lead to a variety of biomedical materials that restore tissue structure and function, including bone repair and regeneration. Other likely applications involve more basic areas of materials science and engineering, including “green chemistry,” which will prevent or reduce pollution.

The research was funded by the National Institutes of Health, the U.S. Air Force Office of Scientific Research and the European Commission.

Silk research spans a decade

Kaplan and his fellow researchers have been working on silks for more than a decade and have focused on these specific spider silk-silica chimeric proteins for about a year.

“We have worked on silks for a long time and we were designing new versions of silks using genetic engineering,” said Kaplan. “Since the diatom and other mineral forming domains had recently been identified in the literature, the silk-silica combination seemed potentially important from a materials perspective.”

In 2002, Kaplan and his team of researchers from Tufts’ School of Engineering and School of Medicine developed a tissue engineering strategy to repair one of the world’s most common knee injuries -- ruptured anterior cruciate ligaments (ACL) -- by mechanically and biologically engineering new ones using silk scaffolding for cell growth. A year later, Kaplan and a postdoctoral fellow at Tufts discovered how spiders and silkworms are able to spin webs and cocoons made of silk and aspects of the spinning process to replicate it artificially.

Source: Tufts University

Explore further: Demystifying nanocrystal solar cells

add to favorites email to friend print save as pdf

Related Stories

New analysis explains collagen's force

Jan 22, 2015

Research combining experimental work and detailed molecular simulations has revealed, for the first time, the complex role that water plays in collagen—a protein that is a component of tendons, bone, skin ...

Patent issued for substance with medical benefits

Nov 04, 2014

A novel jelly-like substance developed by Kansas State University researchers was recently issued a U.S. patent. The substance may be used for biomedical applications, ranging from cell culture and drug delivery to repairing ...

A silky spin on protective armor

May 13, 2013

At seven times the toughness of Kevlar, a silk produced by the Caerostris darwini spider of Madagascar is more robust than any other material—synthetic or natural. Most spider silks are about two times ...

Spectroscopy sheds new light on mysteries of spider silk

Feb 06, 2013

(Phys.org)—Researcher and team are the first to measure all of the elastic properties of an intact spider's web, drawing a remarkable picture of the behavior of one of nature's most intriguing structures. ...

Recommended for you

DNA nanoswitches reveal how life's molecules connect

Jan 30, 2015

A complex interplay of molecular components governs almost all aspects of biological sciences - healthy organism development, disease progression, and drug efficacy are all dependent on the way life's molecules ...

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.