Supercomputer Sets New Performance Record

Jun 23, 2006
IBM Blue Gene
IBM Blue Gene supercomputer

The world’s fastest supercomputer, BlueGene/L, set a new performance standard on June 22, 2006. Housed at Department of Energy's National Nuclear Security Administration (NNSA) Lawrence Livermore National Laboratory, the machine achieved a sustained performance of 207.3 trillion floating-point operations per second (teraFLOPS).

BG/L is an IBM supercomputer housed at NNSA's Lawrence Livermore National Laboratory, and is ranked as the world's fastest supercomputer by the Top500 (www.top500.org). It is used to conduct materials science simulations for NNSA's Advanced Simulation and Computing (ASC) program, which unites the scientific computing know-how of NNSA's Los Alamos, Sandia and Lawrence Livermore national laboratories. The computer simulation capabilities developed by the ASC program provide the nuclear weapons analysis that NNSA needs to keep the nuclear weapons stockpile safe, secure and reliable without underground nuclear testing.

"This is an important step on the path to performing predictive simulations of nuclear weapons, and these simulations are vital to ensuring the safety and reliability of our nuclear weapons stockpile. These results further confirm that BlueGene/L's architecture can scale with real-world applications. The performance of the Qbox code was made possible by the partnership with our IBM collaborators, who helped to optimize the code's performance on BG/L's 131,072 processors," said Dimitri Kusnezov, head of NNSA's ASC Program.

The performance improvement over previous efforts was due in large measure to new mathematical libraries developed by software researchers at IBM that take best advantage of BG/L's dual-core architecture.

"Today's results represent the first time in history that a scientific code has sustained a level of performance in excess of 200 teraFLOPS, breaking the former record also set on Blue Gene at Lawrence Livermore National Laboratory," said David Turek, vice president of Deep Computing at IBM. "Only through collaborative innovation such as through our partnership with the National Nuclear Security Administration and Lawrence Livermore National Laboratory can the boundaries of computing be pushed as far as they've been today. We will continue to work together, pushing the boundaries of insight and invention to advance our shared mission in ways never before possible."

Qbox is a first-principles molecular dynamics (FPMD) code, designed to predict the properties of metals under extreme conditions of temperature and pressure -- a longstanding goal for researchers in materials science and high energy-density physics. FPMD codes are used for complex simulations at the atomic level in a number of scientific areas, including metallurgy, solid-state physics, chemistry, biology and nanotechnology.

The "Q" in Qbox is for "quantum," a reference to the quantum mechanical descriptions of electrons that are the principal focus of this type of simulation code. The ability to accurately model changes to the electronic structure of atoms distinguishes FPMD codes from classical molecular dynamics codes.

The three-dimensional code run, studying how molybdenum (a transition metal) atoms behave under pressure, represents one of only a handful of "predictive science" simulations achieving this size: 1,000 molybdenum atoms. While classical molecular dynamics calculations are frequently run with billions of atoms because the interactions between the atoms are relatively easily computed, routine quantum runs, which are both very complex and accurate, have been restricted to around 50 atoms until now. The difference between 50 and a 1000 makes the difference between being able to explore new classes of chemical systems using first-principles methods, including heterogeneous environments (considering interactions between unlike molecules) and extreme chemistry (including shocks). Such a step is important to NNSA's stockpile stewardship program, and also has important implications for biological systems, including the study of proteins.

Predictive simulations allow researchers to understand how complex physical, chemical and biological systems behave over time, where it was previously only possible to get brief snapshots at a smaller scale. This capability to do predictive science is important to NNSA's national security mission, as its researchers try to understand how the materials in nuclear weapons age, particularly for those warheads that have aged beyond their intended life. Furthermore, the performance of the Qbox code, specially designed to run on large-scale platforms such as BG/L, has implications for the broader research community and will likely enable the development of new materials of interest to many industries.

"The combination of this code and this computer, both products of a partnership between ASC and IBM, has implications for the broad research community well beyond NNSA's mission of stockpile science. Such spin-off benefits often accompany focused programmatic efforts to foster technology. This was certainly true for NASA during the years of the moon landing and is true today," said Kusnezov. "Disruptive advanced architecture work for ASC leads to low-cost, but highly useful computers that benefit the nation well beyond national security."

Source: IBM

Explore further: Ineda developing low power companion processors to increase battery life for wearables

add to favorites email to friend print save as pdf

Related Stories

Scientists get set for simulated nuclear inspection

15 hours ago

Some 40 scientists and technicians from around the world will descend on Jordan in November to take part in a simulated on-site inspection of a suspected nuclear test site on the banks of the Dead Sea.

Calculating conditions at the birth of the universe

Aug 26, 2014

(Phys.org) —Using a calculation originally proposed seven years ago to be performed on a petaflop computer, Lawrence Livermore researchers computed conditions that simulate the birth of the universe.

Exporting US coal to Asia could drop emissions 21 percent

Aug 19, 2014

Under the right scenario, exporting U.S. coal to power plants in South Korea could lead to a 21 percent drop in greenhouse gas emissions compared to burning the fossil fuel at plants in the United States, according to a new ...

Recommended for you

Ride-sharing could cut cabs' road time by 30 percent

9 hours ago

Cellphone apps that find users car rides in real time are exploding in popularity: The car-service company Uber was recently valued at $18 billion, and even as it faces legal wrangles, a number of companies ...

Jumping into streaming TV

10 hours ago

More TV viewers are picking up so-called streaming media boxes in the hope of fulfilling a simple wish: Let me watch what I want when I want.

Job listing service ZipRecruiter raises $63 million

11 hours ago

ZipRecruiter, a California start-up that tries to simplify tasks for recruiters, has raised $63 million in initial venture capital funding as the 4-year-old service races to keep up with growing demand.

User comments : 0