Nanoparticles and Lasers Create Cancer-Killing Microbubbles

Jun 19, 2006

One promising use of gold nanoparticles is to use them to convert laser energy into heat that can kill malignant cells. Now, in a promising twist on this approach to anticancer therapy, an international team of investigators has developed a method that uses clusters of gold nanoparticles to create vapor microbubbles that can kill targeted cells.

Reporting their work in the journal Lasers in Surgery and Medicine, Dmitri Lapotko, Ph.D., from the Luikov Heath and Mass Transfer Institute in Minsk, Belarus, and colleagues used antibody-targeted gold nanoclusters to selectively destroy leukemia cells present in human bone marrow samples. To achieve optimal targeting, the investigators used a two-stage labeling technique.

In the first stage, they used diagnosis-specific monoclonal antibodies, that is, the antibodies used by clinical laboratories to diagnose specific subsets of acute B-lymphoblast leukemia (ALL) in human patients, to label the malignant cells. This type-specific antibody serves as the target for the second monoclonal antibody, which is attached to the gold nanoparticles.

Imaging studies showed that tumor cells took in only the dual-targeted nanoparticles and that normal cells did not take up the nanoparticles. As the nanoparticles accumulate within the targeted tumor cells, they form nanoclusters that generate microbubbles when activated by laser light. One advantage that comes from allowing nanoclusters to form is that nanoclusters can create microbubbles at lower laser power than can individual nanoparticles, thus reducing potential damage to healthy tissue.

In fact, single laser pulses were able to generate microbubbles within the targeted cells, an event that does not occur with free nanoparticles in solution. Experimental results showed up to 85 percent of targeted tumor cells were killed after a single laser pulse. Multiple pulses killed more than 99 percent of the tumor cells.

This work is detailed in a paper titled, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles.” An investigator from Fairway Medical Technologies in Houston also participated in this study. An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

2 hours ago

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

Gold nanorods attach to, kill bladder cancer cells

Apr 08, 2014

(Phys.org) —A major strategy of modern cancer research is to discover a difference between cancerous and healthy cells and then to specifically target this difference to kill cancer cells without harming ...

Bright future for protein nanoprobes

Mar 18, 2014

(Phys.org) —The term a "brighter future" might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...