Researchers use laser amplifier to slow light at room temperature

Oct 04, 2005

Researchers at the University of California, Berkeley, have made a dramatic advance in their quest to slow light down for applications in speedier communication networks.
The research team, led by Connie J. Chang-Hasnain, UC Berkeley professor of electrical engineering and computer sciences, has created a device that uses a laser amplifier to slow the speed of light more than one million-fold. The researchers clocked the speed of light at 245 meters per second, or three-quarters the speed of sound in air. Moreover, the team did this at room temperature.

The experiment is described in the journal Optics Express, published yesterday (Monday, Oct. 3). The researchers built upon work completed one year ago in which they slowed light by a factor of 31,000 times, or 6 miles per second.

"Last year, UC Berkeley researchers were able to use coherent population oscillation in semiconductors to slow light down, but this method required temperatures as low as 10 degrees Kelvin," said Xiaoxue Zhao, a UC Berkeley graduate student in electrical engineering and computer sciences and lead author of the paper. "This year, we got a state-of-the-art laser and used it as an amplifier to adjust the velocity of light at room temperature, making it more practical and effective."

By lowering the electrical current applied to a vertical cavity surface emitting laser - the same type of laser used in an optical mouse - the researchers were able to use the device as an amplifier to pump up the signals of the light passing through it. As the electrical current injected into the laser cavity increases, the velocity of light decreases.

"This method has the added benefit of allowing us to significantly vary the speed of light," said Bala Pesala, a UC Berkeley graduate student in electrical engineering and computer sciences and co-author of the paper. "By varying the electrical current, we can adjust the frequency delay by as much as 100 picoseconds for a 2.8 gigahertz broadband signal."

In optoelectronics, adjusting the speed of light is part of an effort to overcome a bottleneck in optical communications. Optical signals speed along fiber networks, but are then jammed as they hit an intersection, or router. At these intersections, light signals are converted to slower moving electronic data to be directed to the correct path before being switched back to light, a process known as optical-electronic-optical (OEO) conversion.

"Controlling the speed of light along these networks could ultimately eliminate the need for these OEO conversions, which are both slow and costly to power," said Chang-Hasnain, principal investigator of the project and director of UC Berkeley's Center for Optoelectronic Nanostructured Semiconductor Technologies. "Without this traffic jam, we could easily transmit 3-D graphics and ultra high-resolution video, among other applications."

Prior experiments have demonstrated that light beams can be slowed through atomic vapor as well as solid-state crystal. But Chang-Hasnain points out that semiconductors have 1 million to 1 billion times broader bandwidth capacity than atomic gas or crystal, making them more practical for network communication applications.

The researchers hope to eventually freeze light in its tracks, which would open doors to a world of optical memory and storage. "Imagine if we could store the entire contents of the Library of Congress in one flash memory card," said Chang-Hasnain. "That's still many, many years off, but a number of researchers are working towards this objective. In this effort, the words of the poet William Blake seem appropriate. He wrote, 'Hold infinity in the palm of your hand, and eternity in an hour.' That describes what we're trying to do."

Other co-authors of the paper are Phedon Palinginis, a UC Berkeley graduate student in electrical engineering and computer sciences, and Philip Hemmer, associate professor of electrical engineering at Texas A&M University.

This research was supported by the Defense Advanced Research Projects Agency and the U.S. Air Force.

Source: UC Berkeley

Explore further: Cool calculations for cold atoms: New theory of universal three-body encounters

add to favorites email to friend print save as pdf

Related Stories

Cool roofs in China can save energy and reduce emissions

Aug 28, 2014

( —Working with Chinese researchers, the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has conducted the first comprehensive study of cool roofs in China and concluded ...

A new, tunable device for spintronics

Aug 28, 2014

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

Breakthrough in light sources for new quantum technology

Aug 29, 2014

One of the most promising technologies for future quantum circuits are photonic circuits, i.e. circuits based on light (photons) instead of electrons (electronic circuits). First, it is necessary to create ...

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Recommended for you

New method for non-invasive prostate cancer screening

6 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

7 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

8 hours ago

( —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

12 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0