Researchers use laser amplifier to slow light at room temperature

Oct 04, 2005

Researchers at the University of California, Berkeley, have made a dramatic advance in their quest to slow light down for applications in speedier communication networks.
The research team, led by Connie J. Chang-Hasnain, UC Berkeley professor of electrical engineering and computer sciences, has created a device that uses a laser amplifier to slow the speed of light more than one million-fold. The researchers clocked the speed of light at 245 meters per second, or three-quarters the speed of sound in air. Moreover, the team did this at room temperature.

The experiment is described in the journal Optics Express, published yesterday (Monday, Oct. 3). The researchers built upon work completed one year ago in which they slowed light by a factor of 31,000 times, or 6 miles per second.

"Last year, UC Berkeley researchers were able to use coherent population oscillation in semiconductors to slow light down, but this method required temperatures as low as 10 degrees Kelvin," said Xiaoxue Zhao, a UC Berkeley graduate student in electrical engineering and computer sciences and lead author of the paper. "This year, we got a state-of-the-art laser and used it as an amplifier to adjust the velocity of light at room temperature, making it more practical and effective."

By lowering the electrical current applied to a vertical cavity surface emitting laser - the same type of laser used in an optical mouse - the researchers were able to use the device as an amplifier to pump up the signals of the light passing through it. As the electrical current injected into the laser cavity increases, the velocity of light decreases.

"This method has the added benefit of allowing us to significantly vary the speed of light," said Bala Pesala, a UC Berkeley graduate student in electrical engineering and computer sciences and co-author of the paper. "By varying the electrical current, we can adjust the frequency delay by as much as 100 picoseconds for a 2.8 gigahertz broadband signal."

In optoelectronics, adjusting the speed of light is part of an effort to overcome a bottleneck in optical communications. Optical signals speed along fiber networks, but are then jammed as they hit an intersection, or router. At these intersections, light signals are converted to slower moving electronic data to be directed to the correct path before being switched back to light, a process known as optical-electronic-optical (OEO) conversion.

"Controlling the speed of light along these networks could ultimately eliminate the need for these OEO conversions, which are both slow and costly to power," said Chang-Hasnain, principal investigator of the project and director of UC Berkeley's Center for Optoelectronic Nanostructured Semiconductor Technologies. "Without this traffic jam, we could easily transmit 3-D graphics and ultra high-resolution video, among other applications."

Prior experiments have demonstrated that light beams can be slowed through atomic vapor as well as solid-state crystal. But Chang-Hasnain points out that semiconductors have 1 million to 1 billion times broader bandwidth capacity than atomic gas or crystal, making them more practical for network communication applications.

The researchers hope to eventually freeze light in its tracks, which would open doors to a world of optical memory and storage. "Imagine if we could store the entire contents of the Library of Congress in one flash memory card," said Chang-Hasnain. "That's still many, many years off, but a number of researchers are working towards this objective. In this effort, the words of the poet William Blake seem appropriate. He wrote, 'Hold infinity in the palm of your hand, and eternity in an hour.' That describes what we're trying to do."

Other co-authors of the paper are Phedon Palinginis, a UC Berkeley graduate student in electrical engineering and computer sciences, and Philip Hemmer, associate professor of electrical engineering at Texas A&M University.

This research was supported by the Defense Advanced Research Projects Agency and the U.S. Air Force.

Source: UC Berkeley

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Rapid data transfer thanks to quantum physics

Feb 25, 2015

RUB engineers have developed a new concept for accelerating data transfer in server farms. To this end, the team at the Chair of Photonics and Terahertz Technology applies a quantum-mechanical variable, i.e. ...

Unique solar lab shines year-round light in Stockholm

Feb 25, 2015

Stockholm is one of the world's most sunlight-deprived capitals for almost half of the year. But now, the city's premier technical university, KTH Royal Institute of Technology, is home to one of the world's ...

New nanowire structure absorbs light efficiently

Feb 25, 2015

Researchers at Aalto University have developed a new method to implement different types of nanowires side-by-side into a single array on a single substrate. The new technique makes it possible to use different ...

Flexible nanosensors for wearable devices

Feb 25, 2015

A new method developed at the Institute of Optoelectronics Systems and Microtechnology (ISOM) from the Universidad Polit├ęcnica de Madrid (UPM) will enable the fabrication of optical nanosensors capable of sticking on uneven ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.