Hubble Eyes Star Birth in the Extreme

Jun 13, 2006
Hubble Eyes Star Birth in the Extreme
Credit: NASA, ESA, and C. Wilson (McMaster University)

Staring into the crowded, dusty core of two merging galaxies, NASA's Hubble Space Telescope has uncovered a region where star formation has gone wild.

The interacting galaxies appear as a single, odd-looking galaxy called Arp 220. The galaxy is a nearby example of the aftermath of two colliding galaxies. In fact, Arp 220 is the brightest of the three galactic mergers closest to Earth. This latest view of the galaxy is yielding new insights into the early universe, when galactic wrecks were more common.

The sharp eye of Hubble's Advanced Camera for Surveys has unveiled more than 200 mammoth star clusters. The newly found clusters far outnumber the six spied by Hubble in a 1992 observation of Arp 220 taken by the Wide Field Planetary Camera, which did not have the sharpness of the Advanced Camera. The heftiest Arp 220 cluster observed by Hubble contains enough material to equal about 10 million suns, which is twice as massive as any comparable star cluster in the Milky Way Galaxy.

The clusters are so compact, however, that even at their moderate distance they look to Hubble like brilliant single stars. Astronomers know the clusters are not stars because they are much brighter than a star would be at that distance, 250 million light-years away in the constellation Serpens.

The star birth frenzy is happening in a very small region, about 5,000 light-years across (about 5 percent of the Milky Way's diameter), where the gas and dust is very dense. There is as much gas in that tiny region as there is in the entire Milky Way Galaxy.

"This is star birth in the extreme," said astronomer Christine D. Wilson of McMaster University in Hamilton, Ontario, Canada, and the leader of the study. "Our result implies that very high star-formation rates are required to form supermassive star clusters. This is a nearby look at a phenomenon that was common in the early universe, when many galaxies were merging."

Wilson's team obtained measurements of the masses and ages for 14 of the clusters, which allowed them to more accurately estimate the masses and ages for all the clusters. The observations revealed two populations of star clusters. One population is less than 10 million years old; the second, 70 to 500 million years old. Clusters in the younger group are more massive than those in the older group.

Wilson doesn't know whether the flurry of star birth occurred at two different epochs or at a continuous frantic pace and perhaps they are not seeing the intermediate-age population. She does know that the starburst was fueled by a collision between two galaxies that began about 700 million years ago. The effects of the merger have stretched out over hundreds of millions of years.

The team's results appeared in the April 20 issue of the Astrophysical Journal. The finding is based on new observations with Hubble's Advanced Camera for Surveys and on a previous study by the Near Infrared Camera and Multi-Object Spectrometer. The Advanced Camera observations, taken in visible light in August 2002, revealed the large cluster population and produced ages for the older grouping of clusters. The near infrared camera study snapped images of the younger cluster population.

Although the new Hubble image showcases Arp 220 in visible light, the galaxy shines brightest in infrared light. In fact, Arp 220 is called an ultra-luminous infrared galaxy (ULIRG). ULIRGs are the products of mergers between galaxies, which can create firestorms of star birth. Starlight from the new stars heats the surrounding dust, causing the galaxies to glow brilliantly in infrared light.

Only a small amount of visible light escapes through the dust-enshrouded galaxy. If astronomers had an unobstructed view of Arp 220 in visible light, the galaxy would shine 50 times brighter than our Milky Way Galaxy because of the light from its massive clusters and associated star formation.

Arp 220 shares a kinship with other interacting galaxies, such as the well-known Antennae galaxies. Both are the products of galactic mergers. The merging process in Arp 220, however, is farther along than in the Antennae. In fact, said Wilson, one cannot even see the two galaxies that combined to make up Arp 220. Radio data show two objects 1,000 light-years apart that may represent the cores of the original galaxies.

The galaxy will continue to manufacture star clusters until it exhausts all of its gas, which at the current rate will happen in about 40 million years. This may seem like a long time, but it is practically a blink of an eye for a process occurring on a galactic scale. Then Arp 220 will look like the elliptical galaxies seen today, which have little gas. Some of the giant clusters -- those that are now 100 million years old -- will still be there.

The galaxy is the 220th object in Halton Arp's Atlas of Peculiar Galaxies.

Source: Space Telescope Science Institute

Explore further: 'Perfect storm' quenching star formation around a supermassive black hole

add to favorites email to friend print save as pdf

Related Stories

Hubble focuses on 'the great attractor'

Jan 23, 2013

(Phys.org)—A busy patch of space has been captured in this image from the NASA/ESA Hubble Space Telescope. Scattered with many nearby stars, the field also has numerous galaxies in the background.

The star factory: observing Arp 220

Feb 18, 2012

Using the Herschel Space Observatory, Wilson's group has found Arp 220 to have large amounts of very warm molecular hydrogen gas, a surprising find that implies molecular hydrogen is the dominant coolant in the high-temperature ...

Recommended for you

The hot blue stars of Messier 47

Dec 17, 2014

Messier 47 is located approximately 1600 light-years from Earth, in the constellation of Puppis (the poop deck of the mythological ship Argo). It was first noticed some time before 1654 by Italian astronomer ...

Why is space black?

Dec 16, 2014

Imagine you're in space. Just the floating part, not the peeing into a vacuum hose or eating that funky "ice cream" from foil bags part. If you looked at the Sun, it would be bright and your retinas would ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.