12-qubits reached in quantum information quest

May 08, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed on the largest quantum information processor to date.

Theorists and experimentalists at the Institute for Quantum Computing and (IQC) and Perimeter Institute for Theoretical Physics (PI) in Waterloo, along with MIT, Cambridge, have presented an operational control method in quantum information processing extending up to 12 qubits. The team's research is available in Physical Review Letters (PRL 96, 170501 week ending 5 May, 2006) and describes the approaches, accuracy and scalability. Despite decoherence, the researchers reached a 12-coherence state and decoded it using liquid state nuclear magnetic resonance quantum information processors.

Raymond Laflamme, Executive Director at the Institute for Quantum Computing and Long Term Researcher at Perimeter Institute says - "…our experiment shows a high level of quantum control over the largest quantum register to date. It is an important step in implementing quantum information processing on larger and larger devices. This is an important milestone towards harnessing the quantum world."

The team's findings set a new algorithmic benchmark in a global effort to exploit quantum properties in order to support entirely new modes of information processing – such as quantum computers with an ability to solve certain types of incredibly complex problems that no modern day computer can approach. The basic principles behind today's computers and other information processing devices (known as "classical" systems) were developed in the 1930s. However, today's theories governing the calculation, storage and transmission of information are at a crossroads. As wires and logic gates become ever smaller, quirky quantum phenomena in the tiny world of atoms take over and impede the efficient flow of information. Select groups of international theorists and experimentalists - including those who are clustering in Waterloo, Ontario - are trying to understand and harness the phenomena and, with this latest research, have set a new standard by controlling a 12-Qubit system.

Source: Perimeter Institute for Theoretical Physics

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

add to favorites email to friend print save as pdf

Related Stories

Tidal forces gave moon its shape, according to new analysis

13 minutes ago

The shape of the moon deviates from a simple sphere in ways that scientists have struggled to explain. A new study by researchers at UC Santa Cruz shows that most of the moon's overall shape can be explained by taking into ...

Mapping the optimal route between two quantum states

13 minutes ago

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal ...

US spy agency patents car seat for kids

1 hour ago

Electronic eavesdropping is the National Security Agency's forte, but it seems it also has a special interest in children's car seats, Foreign Policy magazine reported Wednesday.

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

15 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0