Staggering atoms sober up in physics detox cell

May 04, 2006

Using an entirely new technology, a research team from Umeå University in Sweden has succeeded in controlling and converting energy from the random movement of atoms. “You could say that we have found a detox cell where drunken atoms can sober up,” says physicist Peder Sjölund. The findings are being published in the journal Physical Review Letters.

We are surrounded by random, staggering, movements. We don’t notice it, but particles collide with each other in an uncontrolled manner in the air we breathe and in the milk we drink, for instance. This is called Brownian movement. This random movement also functions as an energy reservoir. This is something that is utilized by various systems, such as when proteins are transported in the body, so-called Brownian motors.

The Umeå scientists have developed an advanced laser technique for studying and controlling these movements. The staggering movements of atoms in a field of light can be captured in a type of detox cell made up of laser beams, where they can sober up. The staggering movement is converted there to movement in a specific direction.

“We can control this movement in three dimensions in regard to both velocity and direction,” says Peder Sjölund.

This technology will be able to provide new knowledge about how energy in living cells is converted from chemical energy to movement in molecular motors that are transported in cells. The underlying principle is very general and can also be applied in nanotechnology and for transporting information in super-rapid calculations in quantum computers, for example.

It may be utopian to be able to offer people access to free and inexhaustible energy by converting energy with this technology, and this will certainly not become a reality in our lifetime. Nevertheless, the Umeå scientists have shown that it is possible, though only in tiny systems.

Source: The Swedish Research Council

Explore further: Thermoelectric power plants could offer economically competitive renewable energy

add to favorites email to friend print save as pdf

Related Stories

Ultra-short X-ray pulses explore the nano world

Nov 24, 2014

Ultra-short and extremely strong X-ray flashes, as produced by free-electron lasers, are opening the door to a hitherto unknown world. Scientists are using these flashes to take "snapshots" of the geometry ...

Simulation predicts epidermal responses to compounds

Nov 18, 2014

Skin is the body's largest organ. It is a protective barrier, keeping microbes out and moisture in. It also regulates temperature, enables sensation, and makes vitamin D. But researchers don't fully understand ...

Molecules in a fluid not randomly arranged

Nov 13, 2014

FOM PhD researcher Matthijs Panman and his colleagues from the University of Amsterdam have demonstrated that molecules in liquid alcohol are not randomly oriented with respect to each other. The angle between ...

Recommended for you

Acoustic tweezers manipulate cell-to-cell contact

22 minutes ago

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.