Iron oxide nanoparticles may help detect, treat tumors

May 01, 2006

A new technique devised by MIT engineers may one day help physicians detect cancerous tumors during early stages of growth. The technique allows nanoparticles to group together inside cancerous tumors, creating masses with enough of a magnetic signal to be detectable by a magnetic resonance imaging (MRI) machine.

The work appears as the cover feature in the May issue of Angewandte Chemie International Edition, one of the world's leading chemistry journals.

The research, which is just moving into animal testing, involves injecting nanoparticles made of iron oxide into the body, where they flow through the bloodstream and enter tumors.

Solid tumors must form new blood vessels to grow. But because this growth is so rapid in cancerous tumors, there are gaps in the endothelial cells that line the inside of the blood vessels. The nanoparticles can slip through these gaps to enter the tumors.

Once inside the tumor, the nanoparticles can be triggered to group together by a mechanism designed by the MIT engineers. Specifically, certain enzymes, or proteases, inside the tumors cause the nanoparticles to "self-assemble" or stick together. The resulting nanoparticle clumps are too big to get back out of the gaps. Further, the clumps have a stronger magnetic signal than do individual nanoparticles, allowing detection by MRI.

"We inject nanoparticles that will self-assemble when they are exposed to proteases inside of invasive tumors," said Sangeeta N. Bhatia, M.D., Ph.D., associate professor of the Harvard-MIT Division of Health Sciences & Technology (HST) and Electrical Engineering and Computer Science (EECS). "When they assemble they should get stuck inside the tumor and be more visible on an MRI. This might allow for noninvasive imaging of fast-growing cancer 'hot spots' in tumors." Bhatia also is affiliated with the MIT-Harvard Center of Cancer Nanotechnology Excellence.

The technique initially is being used to study breast tumors. Bhatia added that it eventually may be applied to many different types of cancers and to study the "triggers" that turn a benign mass in the body into a cancerous tumor. Nanoparticles also hold the promise of carrying medicines that could kill cancer cells, replacing radiation or chemotherapy treatments that cause negative side effects such as hair loss or nausea.

The researchers hold a provisional patent on their work.

Source: MIT

Explore further: Scientists convert microbubbles to nanoparticles

Related Stories

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

Recommended for you

Scientists convert microbubbles to nanoparticles

20 hours ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Gold nanoparticles for targeted cancer treatment

Mar 26, 2015

The use of tiny drug-loaded nanocarriers for the safe, targeted delivery of drugs to designated parts of the body has received much press in recent years. Human trials of nanocarriers targeting pancreatic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.