AFRL Proves Feasibility Of Plasma Actuators

Apr 24, 2006

The Air Force Research Laboratory is laying the groundwork to develop revolutionary hypersonic aerospace vehicles. AFRL is examining the feasibility of replacing traditional mechanical actuators, which move to control an air vehicle's flight control surfaces like wing flaps, with plasma actuators that require no moving parts and are more reliable.

As part of the Air Force Office of Scientific Research Boundary Layers and Hypersonics program, AFRL conducted a wind tunnel test to evaluate the feasibility of using plasma actuators for airframe flight control. In AFRL's Mach 5 plasma channel wind tunnel, engineers used a strong electric field to ionize air around an air vehicle model to create plasma.

Air diverted by plasma heating successfully exerted force on the model and demonstrated that the plasma actuator concept is a viable area for further study and development.

AFRL's Mach 5 plasma channel wind tunnel relies upon a vacuum system to generate low-density air flows. A high electrical voltage placed between metal electrodes on a model in the plasma channel ionizes the air between them and creates plasma, a state of matter where electrons are stripped from molecules. While usually occurring at extreme temperatures and pressures such as the conditions experienced within a star or by a hypersonic vehicle during flight, man-made plasma is found in items like fluorescent light bulbs and computer screen plasma displays.

The Boundary Layers and Hypersonics program is developing knowledge of fluid physics to facilitate future aerospace vehicle designs. The program focuses on characterizing, predicting and controlling high-speed fluid dynamic phenomena including boundary layer transition, shock/boundary layer, shock/shock interactions and other airframe propulsion integration phenomena including real-gas effects, plasma aerodynamics, magnetohydrodynamics and high-speed flow heat transfer.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: 'Comb on a chip' powers new atomic clock design

add to favorites email to friend print save as pdf

Related Stories

Fox bid for Time Warner sparks content merger race

2 hours ago

Even though Rupert Murdoch's $76 billion bid for rival media giant Time Warner Inc. has been rejected, that doesn't mean how you watch TV shows and movies will stop changing any time soon.

BlackBerry stock falls after Apple-IBM deal

2 hours ago

Blackberry stock fell sharply Wednesday, one day after the announcement of a landmark deal between rivals Apple and IBM to offer custom-tailored apps for businesses.

Comet ISON's dramatic final hours

3 hours ago

(Phys.org) —A new analysis of data from the ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft has revealed that comet 2012/S1 (ISON) stopped producing dust and gas shortly before it raced past ...

Recommended for you

'Comb on a chip' powers new atomic clock design

14 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

14 hours ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

14 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

17 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0