Traces Of Stowaway Earth Algae Could Survive On Mars, Study Finds

May 18, 2005

Some hardy Earth microbes could survive long enough on Mars to complicate the search for alien life, according to a new study co-authored by University of Florida researchers.
Though scientists looking for life on Mars worry about contamination from stowaway spores clinging to spacecraft, the inhospitable Martian environment is actually an effective sterilizing agent: The intense ultraviolet rays that bombard the Martian surface are quickly fatal to most Earth microbes. However, the new study shows that at least one tough Earth species, a type of blue-green algae called Chroococcidiopsis, could live just long enough to leave a biological trace in the Martian soil – creating a potential false positive.

The study appears in the current issue of the journal Astrobiology and was co-authored by Charles Cockell of the British Antarctic Survey and UF research assistant professor Andrew Schuerger, a Mars astrobiologist and plant pathologist at UF’s Institute of Food and Agricultural Sciences. Schuerger is one of several UF researchers associated with the Kennedy Space Center’s Space Life Sciences Laboratory, where he investigates how Earth microbes might survive, grow and adapt in simulated Martian conditions.

“It’s very possible that we could send viable microorganisms to Mars and then bring some of those same Earth bugs back with us,” Schuerger said.

The researchers examined a dry-tolerant and radiation-resistant algae that thrives in Earth’s most extreme conditions, from the hot, arid Negev desert in Israel to the frigid Antarctic Ross Desert. This bacterium has not been found on the surfaces of spacecraft, but it represents a worst-case scenario for scientists.

“The only way to find out (if there’s life on Mars) is by going there and studying it, yet we take with us the potential to contaminate our own studies,” said John Rummel, NASA’s current Planetary Protection Officer. NASA created the Planetary Protection Office to safeguard against transferring potentially harmful organisms to or from Earth during space exploration.

“It’s the biological Heisenberg principle,” Rummel added. “Can we do the studies without contaminating what we’re looking at? So we have to have some idea of whether or not Earth life is likely to survive (on other planets).”

To test the limits of the algae’s endurance, the researchers subjected it to a simulated Martian atmosphere, re-created within a 5-foot-long stainless steel barrel-shaped chamber.

On Mars, average global temperature is -78 degrees Fahrenheit, atmospheric pressure is one-hundredth of the Earth’s and UV rays striking the surface are three times as intense as on the ozone-protected Earth – enough to produce a severe sunburn on exposed skin in minutes. Of these harsh conditions, the UV rays are the most powerful sterilizing agent, Schuerger said.

The researchers found that when exposed to the full spectrum of these rays, 99.9 percent of the algae in the chamber died within five minutes – significant when compared with the survival time of other microbes exposed to the same conditions: 15 seconds. However, the algae also left chemical traces of their existence that were detectable for several more hours. Those “biosignatures” included component molecules such as chlorophyll and the measured activity of enzymes involved in cell membrane formation. Enzyme activity persisted for an hour, while traces of chlorophyll remained for up to four hours.

“This demonstrates that looking for biogenic signatures alone will complicate the process of looking for life,” he said. “You have to do both, you have to do a number of different procedures, and they have to complement one another.”

The algae also managed to survive when it was shielded from the direct onslaught of UV rays by a millimeter-thick layer of sand or rock. Such a scenario could occur if a robot lands on the Martian surface and its pads sink immediately into the sand, Schuerger said. However, though buried microbes may survive for some period of time, they are still subject to Mars’ low atmospheric pressure, high aridity and temperature extremes. Under those conditions, they wouldn’t necessarily grow or reproduce and are therefore unlikely to pose an ongoing contamination threat, he added.

Rummel agreed. "You might have a very lonely cyanobacterium waiting for something to happen."

The paper’s other authors include Daniela Billi of the University of Rome; E. Imre Friedmann of NASA’s Ames Research Center; and Dr. Corinna Panitz of the German Aerospace Center in Koln. Space Life Sciences Center.

Source: University of Florida

Explore further: China to send orbiter to moon and back

add to favorites email to friend print save as pdf

Related Stories

NASA investigating deep-space hibernation technology

5 hours ago

Manned missions to deep space present numerous challenges. In addition to the sheer amount of food, water and air necessary to keep a crew alive for months (or years) at a time, there's also the question ...

Mars One: MIT study team looks before mankind leaps

Oct 14, 2014

Mars One is a not-for-profit foundation which has a mission to establish a human settlement on Mars. Starting in 2024, Mars One intends to set up a permanent human settlement on Mars. Crews of four will depart ...

First light for MAVEN (w/ Video)

Oct 13, 2014

After 10-month voyage across more than 400 million miles of empty space, NASA's MAVEN spacecraft reached Mars on Sept. 21st 2014. Less than 8 hours later, the data started to flow.

Recommended for you

China to send orbiter to moon and back

2 hours ago

China will launch its latest lunar orbiter in the coming days, state media said Wednesday, in its first attempt to send a spacecraft around the moon and back to Earth.

NASA Webb's heart survives deep freeze test

12 hours ago

After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, ...

Cosmic rays threaten future deep-space astronaut missions

17 hours ago

Crewed missions to Mars remain an essential goal for NASA, but scientists are only now beginning to understand and characterize the radiation hazards that could make such ventures risky, concludes a new paper ...

Big black holes can block new stars

19 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

User comments : 0