Ticking of cellular clock promotes seismic changes in the chromatin landscape associated with aging

Oct 03, 2010
Each time a cell divides, the protective "caps" at the tip of chromosomes (red and green dots) erode a little bit further. As telomeres wear down, their DNA undergoes massive changes in the way it is packaged. These changes likely trigger what we call "aging." Credit: Image: Courtesy of Dr. Jan Karlseder, Salk Institute for Biological Studies

Like cats, human cells have a finite number of lives-once they divide a certain number of times (thankfully, more than nine) they change shape, slow their pace, and eventually stop dividing, a phenomenon called "cellular senescence".

Biologists know that a cellular clock composed of structures at the chromosome end known as telomeres records how many "lives" a cell has expended. Up to now, investigators have not yet defined how the clock's ticking signals the approach of cellular oblivion.

In a study published in the Oct. 3, 2010, issue of , a team led by Jan Karlseder, Ph.D., at the Salk Institute for Biological Studies reports that as cells count down to senescence and telomeres wear down, their DNA undergoes massive changes in the way it is packaged. These changes likely trigger what we call "aging".

"Prior to this study we knew that telomeres get shorter and shorter as a cell divides and that when they reach a critical length, cells stop dividing or die," said Karlseder, an associate professor in the Molecular and Cell Biology Laboratory. "Something must translate the local signal at chromosome ends into a huge signal felt throughout the . But there was a big gap in between."

Karlseder and postdoctoral fellow Roddy O'Sullivan, Ph.D., began to close the gap by comparing levels of proteins called histones in young cells-cells that had divided 30 times-with "late middle-aged" cells, which had divided 75 times and were on the downward slide to senescence, which occurs at 85 divisions. bind linear and compress them into nuclear complexes, collectively referred to as chromatin.

Karlseder and O'Sullivan found that aging cells simply made less histone protein than do young cells. "We were surprised to find that histone levels decreased as cells aged," said O'Sullivan, the study's first author. "These proteins are required throughout the genome, and therefore any event that disrupts this production line affects the stability of the entire ."

The team then undertook exhaustive "time-lapse" comparisons of histones in young versus aging cells and confirmed that marked differences in the abundance and variety of histones were evident at every step as cells moved through cell division.

O'Sullivan calls the "default" histone pattern displayed by young cells "happy, healthy chromatin." By contrast, he says, aging cells appear to undergo stress as they duplicate their chromosomes in preparation for cell division and have difficulty restoring a "healthy" chromatin pattern once division is complete.

Comparisons of histone patterns in cells taken from human subjects-a 9- versus a 92-year-old-dramatically mirrored histone trends seen in cell lines. "These key experiments suggest that what we observe in cultured cells in a laboratory setting actually occurs and is relevant to aging in a population," says Karlseder.

The initiation of diseases associated with aging, such as cancer, is largely attributed to DNA, or genetic, damage. But this study suggests that aging itself is infinitely complex: that progressive telomere shortening hastens chromosomal aging by changing the way genes entwine with histones, so-called "epigenetic" changes. How DNA interacts with histones has enormous impact on whether genes are expressed-hence the current intense interest in the relationship of the epigenomic landscape to disease states.

Rescue experiments in which the team cosmetically enhanced aging cells confirmed that signals emitted by eroding telomeres drove epigenetic changes. When aging cells were engineered to express telomerase, the enzyme that restores and extends stubby telomeres, those rejuvenated cells showed histone levels reminiscent of "happy, healthy chromatin," and a partial return to a youthful profile.

Lest you sink your savings into schemes to elongate your telomeres, beware. "The flip side of elongating telomeres is that you enable cells to grow for much longer periods and can generate what are called "immortal" cells," says Karlseder. "That takes you one step closer to cancer cell development."

Up to now, the Karlseder lab has mostly focused on interactions between telomeres and DNA repair mechanisms. This paper now pushes them into the field of epigenetics. "We will continue to examine epigenetic changes in at different ages," says Karlseder. "We now want to determine if histone changes follow a linear process or whether they kick in as we age."

Explore further: Mycobacteria metabolism discovery may pave way for new tuberculosis drugs

Related Stories

Wistar Institute team finds key target of aging regulator

Jun 10, 2009

Researchers at The Wistar Institute have defined a key target of an evolutionarily conserved protein that regulates the process of aging. The study, published in Nature, provides fundamental knowledge about key mechanisms of agi ...

Common weed could provide clues on aging and cancer

Oct 26, 2009

A common weed and human cancer cells could provide some very uncommon details about DNA structure and its relationship with telomeres and how they affect cellular aging and cancer, according to a team led by scientists from ...

Preventing cancer without killing cells

Mar 30, 2007

Inducing senescence in aged cells may be sufficient to guard against spontaneous cancer development, according to a paper published online this week in EMBO reports. It was previously unknown whether cellular senescence or ...

Why chromosomes never tie their shoelaces

Sep 08, 2010

In the latest issue of the journal Nature, Miguel Godinho Ferreira, Principal Investigator at the Instituto Gulbenkian de Ciencia (IGC) in Portugal, lead a team of researchers to shed light on a paradox that has puzzled biolog ...

Recommended for you

Report on viruses looks beyond disease

5 hours ago

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

A molecule's transformation filmed at high resolution

Jul 21, 2014

François Légaré's team at the INRS Énergie Matériaux Télécommunications Research Centre successfully imaged a chemical reaction with a spatial and temporal resolution greatly exceeding that obtained to date using microscopes. ...

User comments : 0