Magnetic anomalies shield the Moon

Sep 28, 2010
Figure 1: Spatial variation of the energetic neutral hydrogen flux over the magnetic anomaly close to the Gerasimovic crater. (a) High energy hydrogen flux with energy indicates a ~50% flux reduction inside the magnetic anomaly compared to the surrounding area. (b) Hydrogen flux with lower energy of 30-100 eV fills the magnetic anomaly. (c) The albedo (reflectivity) map of the Moon with the spacecraft trajectories (white lines).

Scientists have discovered a new type of solar wind interaction with airless bodies in our solar system. Magnetized regions called magnetic anomalies, mostly on the far side of the Moon, were found to strongly deflect the solar wind, shielding the Moon’s surface. This will help understand the solar wind behaviour near the lunar surface and how water may be generated in its upper layer. Observational evidence for these findings were presented by Drs. Yoshifumi Futaana and Martin Wieser at the European Planetary Science Congress in Rome, on Friday 24th September.

Atmosphere-less bodies interact with the solar wind quite differently than the Earth: Their surfaces are exposed without any shielding by a dense atmosphere or magnetosphere. This causes them to be heavily weathered by meteoroids or the solar wind, forming a very rough and chaotic surface called regolith. Previously, the solar wind was thought to be completely absorbed by regolith. However, recent explorations of the Earth's by the Chang'E-1, Kaguya and Chandrayaan-1 spacecrafts have revealed that this interaction is not that simple.

A significant flux of high was found to originate from the lunar surface, most probably due to the solar wind directly reflected off the Moon’s regolith. “These results may change dramatically the way we understood the solar wind-regolith interaction so far,” says Dr. Futaana of the Swedish Institute of . “Since the solar wind is one potential source of water on the Moon, we need to make better models of the lunar hydrogen circulation in order to understand how form in its upper layers. Also, it will be possible to remotely investigate the solar wind-surface interaction on other airless bodies, such as Mercury or the Martian moon Phobos, by imaging the energetic that are reflected back to space when the solar wind hits their surface,” he adds.

Figure 2: Comparison between the reflected proton flux and the magnetic anomaly distribution on the Moon. (Left) Proton flux distribution observed by the SWIM sensor mapped on the lunar map (generated by Clementine). The black line shows a contour of the lunar magnetic anomaly. (Right) Magnetic anomaly distribution model based on Lunar Prospector data. The same contour as in the left panel is overlaid here.

The current investigation was carried out with the Sub-keV Atom Reflecting Analyzer instrument which was developed in a collaboration between Sweden, India, Switzerland and Japan and flown onboard the Indian Chandrayaan-1 spacecraft. Scientists have mapped for the first time the energetic hydrogen atoms coming from the Moon, and found that up to one fifth of the solar wind protons reaching the lunar surface are reflected back to space.

This may be a general feature of the atmosphere-less bodies, such as Mercury, meteorites and several moons of the giant planets. “In fact, during the close encounter of the European Mars Express spacecraft with Phobos in 2008, we detected signatures of reflected solar wind protons also from the surface of the Martian moon Phobos,” says Dr. Futaana.

However, when Chandrayaan-1 flew over a magnetic anomaly (magnetized region on the Moon surface), the scientists detected significantly less reflected hydrogen atoms meaning that the solar wind had not reached the lunar surface. In fact, the solar wind was found to be strongly deflected by an aggregation of magnetic anomalies in the southern hemisphere of the lunar far side. “We detected a strong flux of deflected solar wind protons. This clearly indicates that magnetic anomalies can shield the from the incoming solar wind, in the same way as the magnetospheres of several planets in our solar system,” says Dr. Futaana.

“It all depends on how strong the solar wind ‘blows’. When the solar wind pressure is low, this ‘mini-magnetosphere’ expands causing stronger shielding,” adds Dr. Wieser, also of the Swedish Institute of Space Physics.

Explore further: Curiosity brushes 'Bonanza king' target anticipating fourth red planet rock drilling

More information: -- Backscattered solar wind protons by Phobos, Futaana, Y., S. Barabash, M. Holmström, A. Fedorov, H. Nilsson, R. Lundin, E. Dubinin, and M. Fränz, J. Geophys. Res., doi:10.1029/2010JA015486 , in Press.
-- First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms, Martin Wieser, Stas Barabash, Yoshifumi Futaana, Mats Holmström, Anil Bhardwaj, R. Sridharan, M. B. Dhanya, Audrey Schaufelberger, Peter Wurz, and Kazushi Asamura, Geophys. Res. Lett. VOL. 37, L05103, 2010 doi:10.1029/2009GL041721

Related Stories

How the Moon produces its own water

Oct 15, 2009

(PhysOrg.com) -- The Moon is a big sponge that absorbs electrically charged particles given out by the Sun. These particles interact with the oxygen present in some dust grains on the lunar surface, producing ...

Scientists analyse solar wind from moon rock

Apr 10, 2006

Australian National University scientists preparing for the analysis of solar wind samples from NASA’s Genesis mission believe they have already measured solar wind particles in an analysis of lunar soil.

Recommended for you

Australian amateur Terry Lovejoy discovers new comet

19 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

fmfbrestel
5 / 5 (3) Sep 28, 2010
Magnetic Anomalies?!?!?!? YES!! go dig up those monoliths already!
genastropsychicallst
1 / 5 (1) Sep 29, 2010
... image hyperon atlas fission geddon pion Moon core pi 2 system image lepton ...