When the Earth mantle finds its core

Sep 17, 2010
This is a scanning electron microscopy image of a "mantle" sample after transformation, stuck on a copper grille and thinned down by a focused ion beam (FIB). It allows to detect the different synthesized minerals and liquids during these experiments: a matrix, consisting of a phase of a perovskite structure ((Mg,Fe)SiO3), -- the most abundant mineral in the Earth because it is the most stable in the inferior mantle), is shown in light gray. The veins and liquid pockets enriched in iron and calcium are visible (in dark grey). Scale of the horizontal bar is 2 micrometers. Credit: G. Fiquet, IMPMC.

The Earth's mantle and its core mix at a distance of 2900 km under our feet in a mysterious zone. A team of geophysicists has just verified that the partial fusion of the mantle is possible in this area when the temperature reaches 4200 Kelvin. This reinforces the hypothesis of the presence of a deep magma ocean.

The originality of this work, carried out by the scientists of the Institut de Mineralogie et de Physique des Milieux Condenses, lies in the use of X-ray diffraction at the in Grenoble (France). The results will have an effect in the understanding of the dynamics, composition and the formation of the depths of our planet.

On top of the core of the Earth, constituted of , lies the solid mantle, which is made up essentially of magnesium oxides, iron and silicon. The border between the core and the mantle, located at 2900 km under our feet, is highly intriguing to geophysicists. With a pressure of around 1.4 million times the and a temperature of more than 4000 Kelvin, this zone is the home to and changes in states of matter still unknown. The who have studied this subject have acknowledged an abrupt reduction of the speed of the seismic waves, which sometimes reach 30% when getting close to this border. This fact has led scientists to formulate the hypothesis, for the last 15 years, of the partial melting of the Earth mantle at the level of this mantle-core border. Today it has been confirmed.

In order to access the depths of the Earth, scientists have not only seismological images but also a precious experimental technique: diamond anvil cells, coupled with a heating layer. This instrument allows to re-create the same pressure and temperature condition than those in the interior of the Earth, on samples of a few microns. This is the technique used by the researchers of the Institut de minéralogie et de physique des milieux condensés on natural samples that are representatives of the Earth mantle and that have been put under pressures of more than 140 gigapascals (or 1.4 million times the atmospheric pressure), and temperatures of more than 5000 Kelvin.

A new approach to this study has been the use of the X-ray diffraction technique at the European synchrotron ESRF. This has allowed the scientists to determine what mineral phases melt first, and they have also established, without extrapolation, fusion curves of the deep Earth mantle, i.e. the characterization of the passage from a solid state to a partially liquid state. Their observations show that the partial fusion of the mantle is possible when the temperature approaches 4200 Kelvin. These experiments also prove that the liquid produced during this partial is dense and that it can hold multiple chemical elements, among which are important markers of the dynamics of the . These studies will allow geophysicists and geochemists to achieve a deeper knowledge of the mechanisms of differentiation of the Earth and the history of its formation, which started around 4.5 billion years ago.

Explore further: Mysterious source of ozone-depleting chemical baffles NASA

More information: Melting of Peridotite to 140 Gigapascals, G. Fiquet, A.L. Auzende, J. Siebert, A. Corgne, H. Bureau, H. Ozawa, G. Garbarino, Science, September 17, 2010

Provided by European Synchrotron Radiation Facility

4.4 /5 (5 votes)
add to favorites email to friend print save as pdf

Related Stories

Atoms under the mantle

Mar 06, 2007

French CNRS scientists have succeeded in modelling the defects of the earth’s mantle responsible for its deformation. These results, obtained using a novel approach which combines numerical calculus and quantum ...

The Earth's hidden weakness

May 28, 2010

(PhysOrg.com) -- Three thousand kilometres beneath our feet, the Earth's solid rock gives way to the swirling liquid iron of the outer core.

New scenery at Earth's core-mantle boundary found

Sep 02, 2010

(PhysOrg.com) -- Using a diamond-anvil cell to recreate the high pressures deep within the earth, researchers at the California Institute of Technology (Caltech) have found unusual properties in an iron-rich magnesium- and ...

New volume chronicles recent insights into Earth's interior

Oct 03, 2007

A new volume published by the Geological Society of America focuses on techniques that have opened new windows of observation into Earth processes. Advances in High-Pressure Mineralogy highlights recent technical developments ...

Recommended for you

Mysterious source of ozone-depleting chemical baffles NASA

11 minutes ago

A chemical used in dry cleaning and fire extinguishers may have been phased out in recent years but NASA said Wednesday that carbon tetrachloride (CCl4) is still being spewed into the atmosphere from an unknown ...

NASA sees Tropical Storm Lowell's tough south side

7 hours ago

The south side of Tropical Storm Lowell appears to be its toughest side. That is, the side with the strongest thunderstorms, according to satellite imagery from NOAA's GOES-14 and NASA-NOAA's Suomi NPP satellites.

User comments : 0