New dual recognition mechanism discovered in tuberculosis

Sep 09, 2010

One third of the world's population is infected with Mycobacterium tuberculosis (MTB), which leads to tuberculosis (TB), a leading cause of death world-wide. A new discovery, led by a team of researchers from Case Western Reserve University School of Medicine, offers hope for new approaches to the prevention and treatment of TB. The team's discovery of a novel mechanism that may contribute to immune recognition of MTB is published in the September issue of Nature Structural and Molecular Biology.

Most individuals with TB recover from the initial infection and become asymptomatic, but the bacterium persists for years, surviving largely inside macrophages, a type of cell that resides in the immune system. This presents a public health problem in that TB can reactivate and cause serious disease or death. Researchers and physicians know the body's immune system is capable of containing the infection but not curing it completely. It begs the question: "How does the organism survive in the human immune system for so many years?"

For the past 15 years, Drs. Clifford Harding and W. Henry Boom of Case Western Reserve have been seeking the answer to this question. Their work indicated that MTB can inhibit the ability of macrophages to stimulate infection-fighting immune responses, and they identified that a protein on called Toll-like receptor 2 (TLR2) is involved in this immune evasion mechanism. TLR2 seems to be a two-edged sword in the complex to MTB, as it helps some immunity mechanisms and inhibits others. Understanding the balance of these effects and the role of TLR2 may provide insights to design therapies for TB.

"Understanding how MTB interacts with the immune system and how it can both activate and inhibit the immune response is critically important for the design of the next generation of TB vaccines. The persistence of infection is dependent on MTB's ability to manipulate our immune system to its advantage. The paradox here is that the MTB molecule, LprG, stimulates TLR2, one of the major receptors we have to identify disease-causing microorganisms. In this case, too much stimulation through TLR2 actually favors MTB by causing parts of the immune response to shut down," explains W. Henry Boom, MD, professor of medicine and director of the Research Unit at Case Western Reserve School of Medicine.

The new studies show that the potency of LprG to induce these responses is explained by its combination of two mechanisms to activate TLR2: first, by directly stimulating TLR2 and, second, by serving as a carrier to deliver other molecules that stimulate TLR2. This dual mechanism may drive stronger regulation of immune responses by MTB, and future vaccine development may be enhanced by designing approaches to use such mechanisms. Furthermore, the work indicates that LprG contributes to the assembly of the bacterial cell wall, suggesting that it may be possible to develop molecules to interfere with LprG function and potentially serve as new antibiotics to fight TB. The development of new antibiotics is an increasingly important goal, since resistance to existing antibiotics is becoming widespread.

A multi-institutional partnership contributed to the overall success of this research initiative. Two important collaborative groups were led by James C. Sacchettini, PhD, Texas A&M University and D. Branch Moody, MD, Harvard Medical School. In addition, the project was spearheaded by Michael G. Drage and Nicole D. Pecora, two Case Western Reserve students in the MSTP Program, granting dual MD and PhD degrees, in collaboration with Jennifer Tsai, a graduate student in Dr. Sacchettini's group.

"Our research team is composed of several collaborative groups that each contributed key components to this project. The synergistic way in which the team interacted was a perfect example of scientists working together to advance the study of a disease that detrimentally impacts the lives of so many across the globe. We look forward to continuing to advance this research together," says Clifford V. Harding, MD, PhD, professor and interim chair of pathology at Case Western Reserve School of Medicine.

As they look to the future, the research team will work to gain a better understanding of immune responses in TB and hopefully design approaches to treat the deadly disease, including antibiotics or immunotherapies. Continued work will include study of the mechanism of immune-evasion by MTB with the hope of finding ways to reverse this mechanism so that it no longer causes a persistent infection.

Explore further: Researchers image and measure tubulin transport in cilia

Related Stories

Small molecules have big impact for TB bacteria

Mar 31, 2010

Mycobacterium tuberculosis (Mtb) possesses extraordinary survival ability by masking itself from the host immune system and persisting for decades inside the host. Speaking at the Society for General Microbiology's spring ...

Fat clue to TB awakening

Mar 28, 2010

The factors instrumental in triggering latent tuberculosis (TB) infection to progress into active disease have long remained elusive to researchers. New insight into the mystery is provided by Professor David ...

Tuberculosis: On the path to prevention

Dec 01, 2009

Why do some people who are exposed to tuberculosis not become infected or develop the disease? Dr. Erwin Schurr and his team at the Research Institute from the McGill University Health Centre (RI-MUHC), in collaboration with ...

Recommended for you

Researchers image and measure tubulin transport in cilia

13 minutes ago

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

Researchers find unusually elastic protein

2 hours ago

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the ...

How malaria-spreading mosquitoes can tell you're home

Jan 22, 2015

Females of the malaria-spreading mosquito tend to obtain their blood meals within human dwellings. Indeed, this mosquito, Anopheles gambiae, spends much of its adult life indoors where it is constantly expose ...

Study uncovers secrets of a clump-dissolving protein

Jan 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.