Invisibility cloak needed for cooperation? Unusual lipopolysaccharide enables symbiosis between bacterium, fungus

Sep 07, 2010

(PhysOrg.com) -- We and all other organisms must constantly grapple with bacteria. Whether for a necessary symbiosis or an infection, carbohydrate structures on cell surfaces play an important role in the interactions between bacteria and organisms.

A team led by Antonio Molinaro at the University of Naples and Christian Hertweck at the Leibniz Institute for Natural Product Research and Infection Biology in Jena have now discovered an unusual carbohydrate structure without which the symbiosis between a bacterium and a fungus that affects rice plants is not stable. As the researchers report in the journal , the bacterium probably requires this structure as camouflage for protection against the defense mechanisms of the fungus.

In gram-negative bacteria, lipopolysaccharide (LPS) carbohydrate structures are especially important for cell-cell interactions. LPS consists of a complex chain made of various saccharide molecules and a lipid that anchors the structure in the cell membrane. “Previous studies were limited to the role of LPS in the interaction of bacteria with animals or plants,” says Hertweck. “There is thus a sizeable knowledge gap with respect to interaction with other microbes.” The team has now examined a singular symbiosis: The fungus Rhizopus microsporus, which causes rice blight, inhibits root growth in rice plants, causing the plants to die. To achieve this, the fungus needs a partner—the bacterium Burkholderia rhizoxinica. The bacteria produce toxins needed by the fungus to damage the . The nutrients released by the dead plants are then used by both symbiotic partners.

“Until now the mechanism that allows the bacteria to survive within the has remained a mystery,” says Hertweck. Now the team seems to be on the heels of a solution. “We have found an unusual , a chain of several galactose molecules, in the LPS of the bacterium,” says Herweck. “This pattern has not been seen before in this class of bacteria; however similar structures often occur in fungi.” The bacterium possibly mimics these structural elements of its host organism. The researchers infected fungi with mutated bacteria that did not contain these polysaccharides. In this case, the partners are not able establish a stable symbiosis. This becomes evident when the fungi are no longer able to produce spores.

“The special galactose sequence probably acts as a disguise for the ,” opines Hertweck. “It is possible that it is thus not recognized as foreign, which keeps it safe from the defense mechanism of the .”

Explore further: Researchers create designer 'barrel' proteins

More information: Christian Hertweck, An Unusual Galactofuranose Lipopolysaccharide That Ensures the Intracellular Survival of Toxin-Producing Bacteria in Their Fungal Host, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201003301

Related Stories

With fungi on their side, rice plants grow to be big

Jun 10, 2010

By tinkering with a type of fungus that lives in association with plant roots, researchers have found a way to increase the growth of rice by an impressive margin. The so-called mycorrhizal fungi are found ...

Farming and chemical warfare: A day in the life of an ant?

Nov 17, 2008

One of the most important developments in human civilisation was the practice of sustainable agriculture. But we were not the first - ants have been doing it for over 50 million years. Just as farming helped humans become ...

A new plant-bacterial symbiotic mechanism promising

Jul 16, 2007

The growth of most plants depends on the presence of sufficient amounts of nitrogen contained in the soil. However, a family of plants, the legumes, is partially free of this constraint thanks to its ability to live in association ...

Recommended for you

Amino acids key to new gold leaching process

Oct 24, 2014

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

Researchers create designer 'barrel' proteins

Oct 23, 2014

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

User comments : 0