Scientist engineers E. coli to produce biodiesel

Sep 03, 2010

One mention of E. coli conjures images of sickness and food poisoning, but the malevolent bacteria may also be the key to the future of renewable energy.

Desmond Lun, an associate professor of computer science at Rutgers University-Camden, is researching how to alter the of E. coli to produce biodiesel fuel derived from .

"If we can engineer biological organisms to produce biodiesel fuels, we'll have a new way of storing and using energy," Lun says.

Creating renewable energy by making fuels, like making ethanol out of corn, has been a common practice in trying to achieve sustainability.

However, Lun says, "It's widely acknowledged that making fuel out of food sources is not very sustainable. It's too expensive and it competes with our food sources."

One alternative is to modify the E. coli microorganism to make it overproduce fatty acids, which are used to make biodiesel.

"Fatty acid molecules aren't that different from a lot of fuel molecules," says Lun, a Philadelphia resident. "Biodiesel is something that we can generate quite easily. E. coli has been used as a lab organism for more than 60 years and it's well-studied. We know a lot about its genetics and how to manipulate it. We've got to make quite drastic changes to do it and it requires major intervention."

That's where Lun's computer science expertise comes in. Lun builds computational models of the E. coli organisms to determine what would happen if changes are made. Those changes could include removing enzymes to enhance fatty acid production.

"We call it synthetic biology," he says. "It's sort of the next stage of . Instead of making small changes to specific genes, we're really modifying large sections of genome. We're putting in entirely new traits rather than modifying existing traits."

Lun explains, "The unique aspect of my work is this emphasis on computational modeling as a way of guiding it. Even these simple bacteria are immensely complex. Computational modeling can offer a way to speed up the process and make it a faster, better process."

Fatty acid production in the altered bacteria would be enhanced, paving the way for biofuel development.

Explore further: Four billion-year-old chemistry in cells today

add to favorites email to friend print save as pdf

Related Stories

Microbes produce fuels directly from biomass

Jan 27, 2010

A collaboration led by researchers with the U.S. Department of Energy's Joint BioEnergy Institute (JBEI) has developed a microbe that can produce an advanced biofuel directly from biomass. Deploying the tools ...

More, Better Biodiesel

Feb 19, 2010

(PhysOrg.com) -- Yields of biodiesel from oilseed crops such as safflower could be increased by up to 24 percent using a new process developed by chemists at UC Davis. The method converts both plant oils and ...

Research yields pricey chemicals from biodiesel waste

Jun 30, 2008

In a move that promises to change the economics of biodiesel refining, chemical engineers at Rice University have unveiled a set of techniques for cleanly converting problematic biofuels waste into chemicals that fetch a ...

Fats into jet fuel -- NC State 'green' technology licensed

Feb 28, 2007

New biofuels technology developed by North Carolina State University engineers has the potential to turn virtually any fat source – vegetable oils, oils from animal fat and even oils from algae – into fuel to power jet ...

Nature's own chemical plant

Nov 10, 2008

Petroleum is the feedstock for many products in the chemical industry. However, this fossil fuel is becoming increasingly scarce and expensive. Renewable raw materials are an alternative. But can the likes of bioethanol be ...

Recommended for you

Two teams pave way for advances in 2D materials

2 hours ago

This month's headlines on two-dimensional polymers showed noteworthy headway. "2-D Polymer Crystals Confirmed At Last," said Chemical & Engineering News. "Engineers Make the World's First Verified, 2-Dimensional P ...

Nature inspires a greener way to make colorful plastics

21 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

23 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
1 / 5 (1) Sep 03, 2010
E coli is already optimized for transmission in the environment. What happens if this putative GMO is released from the factory(a sewage treatment plant seems a likely candidate), and enters the biosphere?

What effect would fatty-acid production enhanced E.coli have on animals/plants/humans that were infected with the strain(s)

Vital questions that Dr. Lun's vaunted computer modeling neglects to address.