Phenomenon of plate tectonics explained

Aug 31, 2010
Phenomenon of plate tectonics explained
In the left of the image is the East Pacific Rise which has shifted due to transform faults. Beside it is the simulation that shows how transform faults develop over time. (Image: Taras Gerya)

Transform faults subdivide the mid-ocean ridge into segments. Up until now, it was thought that these faults were ruptures that formed in less stable crust areas. Taras Gerya has recorded a model of the dynamics that lead to the transform faults, which shows that what were assumed to be ruptures are in fact structures that have grown naturally.

The Earth's largest range, the mid-ocean ridge (MOR), is found at locations where new is created in the planet's oceans. It runs through the major oceans over a length of around 60,000 kilometres. The MOR demarcates the boundary between the two active plate edges at which the new crust is created and which move a few centimetres further apart each year. A specific feature of the MOR is that it is usually broken and shifted at intervals of a couple of hundred kilometres by what are known as transform faults. "These remarkable structures are still shrouded in mystery. Up to now, they were seen as a follow-on product from pre-existing weak zones in the crust," says Taras Gerya, a private lecturer at the Department for at ETH Zurich, Switzerland. Unlike the area at the plate edges, no new crust is formed at the transform faults. The plates only shift in parallel to each other along the transform faults.

When transform faults develop

Gerya is specialized in the simulation of plate-tectonic processes and has now used high-resolution three-dimensional models to simulate why, how and under what physical conditions transform faults develop at the MOR.

The models show that transform faults develop where the oceanic crust grows asymmetrically, mostly in places where the active plate edges are diverging at a low to medium speed of around 4 to 6 centimetres per year. The asymmetric development stems from the fact that differing amounts of are added to the oceanic crust plates, which thus grow differently. This leads to dynamic instabilities in the crust plate boundary areas and consequently to the spontaneous development of transform faults from the "bends" that form along the MOR due to the differences in crust growth. The results of the study were recently published in the scientific magazine Science.

Snowflakes instead of fragments of broken glass

The simulations show in an impressive manner that the unevenly formed plate boundaries develop more and more "bends" over a few million years and can gradually develop into transform faults. This means that the transform faults are practically rotated and stretched parts of the MOR. The fact that these are plate growth structures rather than plate rupture structures is extremely significant: "Comparable to the difference between the growth structure of a snowflake and the rupture structure of a piece of broken glass," says Gerya.

Explore further: New signs of eruption at Iceland volcano

More information: Gerya T: Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges. Science 27 August 2010 329: 1047-1050. DOI: 10.1126/science.1191349 (in Reports)

add to favorites email to friend print save as pdf

Related Stories

A glimpse at the Earth's crust deep below the Atlantic

Nov 12, 2009

Long-term variations in volcanism help explain the birth, evolution and death of striking geological features called oceanic core complexes on the ocean floor, says geologist Dr Bram Murton of the National ...

New Sumatra quake takes seismologists by surprise

Oct 01, 2009

The huge earthquake that hit Sumatra occurred at a deep, unexpected location, illustrating the dangerously complex geological mosaic in this area, a seismologist told AFP on Thursday.

Recommended for you

Aging Africa

12 hours ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

NASA animation shows Hurricane Marie winding down

12 hours ago

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

EU project sails off to study Arctic sea ice

18 hours ago

A one-of-a-kind scientific expedition is currently heading to the Arctic, aboard the South Korean icebreaker Araon. This joint initiative of the US and Korea will measure atmospheric, sea ice and ocean properties with technology ...

User comments : 0