Hong Kong researchers break new ground in nanotechnology

Aug 30, 2010
Organic Thin-film Transistor Memory Device. Copyright: The Hong Kong Polytechnic University

A pioneering study by researchers of The Hong Kong Polytechnic University (PolyU) has shown that sandwiching a simple layer of silver nanoparticles can significantly improve the performance of organic transistors which are commonly used in consumer electronics.

This revolutionary breakthrough is expected to cut down the cost of memory devices such as touchscreens and e-books and improve their performance.

This cutting-edge research is led by Dr Paddy Chan Kwok-leung, Assistant Professor of the Department of Mechanical Engineering, and Dr Leung Chi-wah, Assistant Professor of the Department of Applied Physics, with postdoctoral research fellow Dr Sumei Wang as one of the key members. The finding was printed in the latest issue (August 2010) of Applied Physics Letters. This work will also be presented in the September issue of Chemical Engineering Progress.

Organic transistor involves the use of organic semiconducting compounds in electronic component. It is a key part of electronic devices like touchscreens. Computer displays enabled by organic transistors are bright with vivid colours. They also provide fast response time and are easy to read in most ambient lighting condition. With the appropriate use of nanotechnology, the performance of organic transistors can be further improved and their size can be made thinner. The novel method developed by PolyU researchers is much more compatible with the low-cost, continuous roll-to-roll fabrication techniques used to make .

More importantly, Dr Chan and his co-researchers have shown that the thickness of the nanoparticle layer changes the performance in a more predictable way and thereby optimizing transistor performance to meet application requirements. Organic transistors made with a 1-nanometer nanoparticle layer have stable memory which lasts for three hours, making it suitable for memory buffers. And transistors with a 5-nanometer-thick layer can retain their charge for a much longer time.

PolyU researchers anticipate a very high potential for the use of organic memory in next-generation memory devices because of its flexibility and relatively low cost.

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

Provided by Hong Kong Polytechnic University

5 /5 (5 votes)
add to favorites email to friend print save as pdf

Related Stories

Buried silver nanoparticles improve organic transistors

Aug 10, 2010

Out of sight is not out of mind for a group of Hong Kong researchers who have demonstrated that burying a layer of silver nanoparticles improves the performance of their organic electronic devices without requiring complex ...

Organic flash memory developed

Dec 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.