Fuel treatments reduce wildfire severity, tree mortality in Washington forests

Aug 25, 2010

A study conducted by U.S. Forest Service and University of Washington (UW) scientists has found that fuel treatments—even of only a few acres—can reduce fire severity and protect older trees desirable for their timber, wildlife, and carbon-storage value. The finding is part of a three-year study of the 175,000-acre Tripod Fire and is published in the August issue of Canadian Journal of Forest Research.

"This study provides the most definitive evidence yet of the effectiveness of fuel treatments in dry forests of the Pacific Northwest," said Susan Prichard, a UW research scientist and senior author of the study. "If dense forests are thinned and the surface fuels are removed, then ponderosa pine and Douglas-fir trees have a better chance of surviving an intense wildfire."

Prichard and her Forest Service colleagues quantified on the Okanogan-Wenatchee National Forest in an area affected by the 2006 Tripod Fire, which burned through forested areas managed to reduce potential fire hazard. Because of the management history of the area, the researchers were able to compare untreated stands, stands that were thinned, and stands that were thinned and then underwent prescribed burns to remove surface fuels.

Results of the comparison revealed that the Tripod Complex fires killed over 80% of trees in stands without treatment and in stands with thinning only. Nearly 60% of trees survived in stands with thinning plus fuel treatment, and three-quarters of larger trees—those with diameters larger than 8 inches—survived.

"It's all about fuels—dead fuels on the ground add energy to wildfire and carry it across the landscape and dense stands of live trees and shrubs act as fuel ladders, moving fire into the canopy," said Dave Peterson, a research biologist with the Forest Service's Pacific Northwest Research Station who coauthored the study. "The objective of fuel treatments is not to eliminate wildfires, but to reduce their intensity in areas where we want to protect resources."

If, as expected, a warmer climate causes an increase in wildfire in future decades, conducting fuel treatments in ecosystems will be an important tool for reducing damage from fire and increasing resilience to climate change.

"If we implement treatments across large areas and place them strategically, we can manage these low-elevation forests sustainably, even in a warmer climate," Peterson said.

Explore further: Dead floppy drive: Kenya recycles global e-waste

More information: To view the article's abstract online, visit this page.

add to favorites email to friend print save as pdf

Related Stories

Pioneering landscape-scale research releases first findings

May 16, 2008

The May issue of the Canadian Journal of Forest Research presents the preliminary findings of 23 scientists involved in one of the first landscape-scale experiments on how forest management affects western Ponderosa pine e ...

Recommended for you

Dead floppy drive: Kenya recycles global e-waste

14 hours ago

In an industrial area outside Kenya's capital city, workers in hard hats and white masks take shiny new power drills to computer parts. This assembly line is not assembling, though. It is dismantling some ...

New paper calls for more carbon capture and storage research

19 hours ago

Federal efforts to reduce greenhouse gas emissions must involve increased investment in research and development of carbon capture and storage technologies, according to a new paper published by the University of Wyoming's ...

Coal gas boom in China holds climate change risks

Aug 22, 2014

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

User comments : 0