Sailing Among the Stars

Aug 18, 2010 by Kimberly Newton
Illustration of NanoSail-D. Image credit: NASA

(PhysOrg.com) -- NASA launch will evaluate how a nanosatellite spacecraft and its payload performs.

This fall, NASA researchers will move one step closer to sailing among the stars.

Astrophysicists and engineers at the Marshall Space Flight Center in Huntsville, Ala., and the Ames Research Center in Moffett Field, Calif., have designed and built NanoSail-D, a “" that will test NASA’s ability to deploy a massive but fragile spacecraft from an extremely compact structure. Much like the wind pushing a sailboat through water, solar sails rely on sunlight to propel vehicles through space. The sail captures constantly streaming , called photons, with giant sails built from a lightweight material. Over time, the buildup of these particles provides enough thrust for a small spacecraft to travel in space.

Many scientists believe that solar sails have enormous potential. Because they take advantage of sunlight, they don’t require the chemical fuel that spacecraft currently rely on for propulsion. Less fuel translates into lower launch weight, lower costs and fewer logistical challenges. Solar sails accelerate slowly but surely, capable of eventually reaching tremendous speeds. In fact, most scientists consider solar sailing the only reasonable way to make interstellar travel a reality.

Of course, it's not as easy as it sounds.

For scientists to really make use of solar sails they must be huge. Because the particles emitted by the sun are so tiny and the spacecraft is so large, the sail needs to intercept as many particles as possible. It's almost like trying to fill up a swimming pool with rain drops; the wider the pool, the more rain it captures. The same is true with solar sails and the sun's energy. In fact, a NASA team in the 1970s predicted they would need a solar sail with a surface area of nearly six million square feet -- about the size of ten square blocks in New York City -- to successfully employ a solar sail for space exploration.

That's where NanoSail-D comes in. As the first NASA solar sail deployed in low-Earth orbit, NanoSail-D will provide valuable insight into this budding technology.

"One of the most difficult challenges solar sails face is trying to deploy enormous but fragile spacecraft from extremely small and compact structures. We can't just attach a giant, fully spread sail to a rocket and launch it into space. The journey would shred the sail to pieces," said Dean Alhorn, NanoSail-D principle investigator and aerospace engineer at the Marshall Center.

"Instead, we need to pack it in a smaller and more durable container, launch that into space and deploy the solar sail from that container," Alhorn said. "With NanoSail-D, we're testing a technology that does exactly that."

One objective of the NanoSail-D project is to demonstrate the capability to pack and deploy a large sail structure from a highly compacted volume. This demonstration can be applied to deploy future communication antennas, sensor arrays or thin film solar arrays to power the spacecraft.

NanoSail-D will be deployed 400 miles up after it's launched this Fall aboard a Minotaur IV rocket, part of the payload aboard the Fast, Affordable, Science and Technology Satellite, or FASTSAT. The relatively low deployment altitude means drag from Earth's atmosphere may dominate any propulsive power it gains from the sun, but the project represents a small first step toward eventually deploying solar sails at much higher altitudes.

When fully deployed, NanoSail-D has a surface area of more than 100 square feet and is made of CP1, a polymer no thicker than single-ply tissue paper. The first big challenge for researchers was to pack it into a container smaller than a loaf of bread and create a mechanism capable of unfolding the sail without tearing it.

"Think of how easily I can rip a piece of tissue paper with my hands," Alhorn said. "Designing a mechanism to unfurl a space sail about that thick without tearing is no easy task."

To accomplish their goal, engineers tightly wound the NanoSail-D sail around a spindle and packed it in the container.

During launch, NanoSail-D is stored inside FASTSAT. Once orbit is achieved, the NanoSail-D satellite will be ejected from the satellite bus and an internal timer will start counting down. When the timer reaches zero, four booms will quickly deploy and the NanoSail-D sail will start to unfold. Within just five seconds the sail will be fully unfurled.

"The deployment works in the exact opposite way of carpenter's measuring tape," Alhorn explained. "With a measuring tape, you pull it out, which winds up a spring, and when you let it go it is quickly pulled back in. With NanoSail-D, we wind up the booms around the center spindle. Those wound-up booms act like the spring. Approximately seven days after launch, it deploys the sail off the center spindle."

Researchers designing NanoSail-D have faced more than their fair share of challenges. When the project was commissioned in 2008, NASA set a deadline of just four months to design and test the new technology. The team had to make decisions quickly, often using whatever parts happened to be available.

"It wasn't a question of going off and doing an exhaustive study of what components to use," Alhorn recalled. "There was no time for that. We said, 'Okay, this is the size of component we need, this is its function' -- and as soon as we found one that worked, we used it."

After months of work in 2008, researchers and engineers finally completed the sail, which was set to launch that August and orbit Earth for one to two weeks. Engineers integrated the flight unit on the Falcon 1, a launch vehicle designed and manufactured by SpaceX of Hawthorne, Calif., but unfortunately the rocket experienced launch failure and NanoSail-D never made it to orbit.

Fortunately, the team had built a spare. For the past two years, Alhorn and his team have worked to refine the second flight unit, hammering out the manufacturing problems and cleaning up the spool and a few of the other internals. In addition to having a higher orbit, the second NanoSail-D will launch into space and remain there for up to 17 weeks, a big increase from the original mission. The new orbit, 400 miles above the earth, also will allow more astronomers to get pictures of the sail as it glides across the night sky. Most of the mission has remained the same, however. For example, because the sail will deploy relatively close to Earth, researchers will have a difficult time detecting the slight solar effects.

After a few months, NanoSail-D will begin to move out of orbit. This de-orbiting process will provide NASA researchers with information about how systems like NanoSail-D might one day be used to bring old satellites out of space. This will provide a means for future satellites to de-orbit after their mission is complete -- keeping them from becoming space junk.

For now, Alhorn and his team are anxiously awaiting NanoSail-D's second attempt.

"The most exciting thing about the upcoming launch is just being able to do it," he said. To get a second chance is invigorating. You rarely get one like this -- that's what motivates me to get up and keep doing this."

After the NanoSail-D flight, Alhorn hopes to continue developing solar sails for NASA. He's already started to design FeatherSail, a next-generation solar sail that will rely on insights gained from the NanoSail-D mission to take solar sailing to the next level.

Explore further: Computer simulation suggests early Earth bombarded by asteroids and comets

More information: For more information about NanoSail-D visit: www.nasa.gov/mission_pages/sma… lsats/nanosaild.html

Related Stories

NASA, Industry Partner Test 20-Meter Solar Sail System

Aug 03, 2005

NASA has reached a milestone in the testing of solar sails -- a unique propulsion technology that will use sunlight to propel vehicles through space. Engineers have successfully deployed a 20-meter solar sail system that ...

Tech sails into space-based research project

Sep 16, 2004

Dr. Chris Jenkins, a researcher at South Dakota School of Mines and Technology, is developing instrumentation that could help NASA find planets outside our solar system, photograph the sun and create an advanced warning sy ...

FASTSAT satellite readies for shipment to Alaska

Jun 08, 2010

NASA has successfully completed a comprehensive pre-shipment review of the Fast, Affordable, Science and Technology Satellite, or FASTSAT, a small, microsatellite class spacecraft bus that will carry six experiment ...

Planetary Society plans new 'solar sail'

Nov 09, 2009

(AP) -- Four years after its first solar sail ended up in the ocean instead of orbit, The Planetary Society announced Monday that by the end of 2010 it will try again to launch a spacecraft that will be propelled by the ...

NASA team successfully deploys two solar sail systems

Aug 10, 2004

NASA's Solar Sail Propulsion Team and industry partners have successfully deployed two 10-meter solar sails in a vacuum environment - a critical milestone in development of the unique propulsion technology that could enab ...

IKAROS unfurls first ever solar sail in space

Jun 11, 2010

(PhysOrg.com) -- Japan's IKAROS has rolled out its solar sail, the first ever deployed in space. JAXA, the Japan Aerospace Exploration Agency, achieved the feat by rotating the craft rapidly and spinning the ...

Recommended for you

Exploring Mars in low Earth orbit

16 hours ago

In their quest to understand life's potential beyond Earth, astrobiologists study how organisms might survive in numerous environments, from the surface of Mars to the ice-covered oceans of Jupiter's moon, ...

Lifetime of gravity measurements heralds new beginning

18 hours ago

Although ESA's GOCE satellite is no more, all of the measurements it gathered during its life skirting the fringes our atmosphere, including the very last as it drifted slowly back to Earth, have been drawn ...

NASA's IceCube no longer on ice

22 hours ago

NASA's Science Mission Directorate (SMD) has chosen a team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, to build its first Earth science-related CubeSat mission.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

jwalkeriii
5 / 5 (2) Aug 18, 2010
Why no reference to Japan's successful launch and testing from June 2010?

Seems to me we should take advantage of Japans expertise at least, or give them some credibilty for already doing so.

http://www.jspec....ros.html

>After the NanoSail-D flight, Alhorn hopes
> to continue developing solar sails for
> NASA. He's already started to design
> FeatherSail, a next-generation solar
> sail that will rely on insights gained
> from the NanoSail-D mission to take solar
> sailing to the next level.
MarkyMark
5 / 5 (1) Aug 19, 2010
I cant help noticing there was no mention of Japan's successful Solar sail test.
Like iwalkeriii said NASA should work with Japan's people in this rather than go back to cold war policies of competing.

In the end if all nations worked together in such sciences things would develop faster and more smartly.

Of course this wont happen with the political elite being there normal selves :(
Soulless49er
1 / 5 (2) Aug 19, 2010
It's sad how puny our technology and progress is compared with what is possible and what could be so. Back in the 1950s and 1960s, there were already beings with crafts that could reach 8,000 mph in a few seconds and stop on a dime while using some sort of electromagnetic propulsion system. Their craft was reported by many military and intelligence officials to be able to separate and merge together seamlessly. Being that this was 60 years ago, we should already have such technology and have caught up technologically with these mysterious beings, but instead space travel is languishing and being put on the bottom of the list for the public.
yyz
not rated yet Aug 19, 2010
There's also no mention of the Planetary Society's LightSail program( http://www.planet...sailing/ ). Given that some former NASA employees are helping in its development, I'm sure there has been some exchange of knowledge between the two groups. Most likely the same has occurred between JAXA and NASA. But I do agree that a coordinated effort including national space programs and NGOs would be worth pursuing.

"In the end if all nations worked together in such sciences things would develop faster and more smartly."

I'm not sure if that's a given for all projects (think ISS), cooperation has led to some spectacular missions (think Cassini-Huygens or Hubble).