Engineering and Music: A Powerful Duet for Art and Science

Aug 16, 2010

An engineer with a love of music, and a musician who likes technology, Mark Bocko and Dave Headlam are both professors at the University of Rochester. For more than ten years their collaboration has been moving both fields forward.

"We very quickly realized that the things he was interested in and the things I was interested in, in theory, were actually very similar," says Headlam, who teaches music theory at Rochester's Eastman School of Music.

Both are part of the university's Music Research Lab (MRL). Its goal is "to perform musically-informed research and to develop technologies that reflect the expertise of musicians as well as scientists and engineers."

Bocko, a professor of electrical and , uses a computer to figure out with extraordinary precision what a musician is doing to create the sound.

"And so the whole idea is you want to capture the essence of the physics of how the instrument works," he says.

For instance, Bocko can study every aspect of how a clarinet player interacts with an instrument.

"So, what the computer learns is how hard they were blowing, the blowing pressure at every instant in time, what their mouth clamping force was on the reed, and the fingering they used," continues Bocko. "But, it's really how the more subtle inputs and the changes of the blowing pressure over time, and how things are connected together. It is learning those parameters from a performance that is the essential part of this."

On the engineering side, this kind of information has led to improvements in music compression.

Most of us are familiar with the musical compression of an iPod, or MP3 player. The basic idea with music compression is just to reduce the size of the file that you have to transmit or store so hundreds of songs can fit on a small device.

With help from the National Science Foundation, Bocko's team has tackled a different type of music compression. They have done it by analyzing both instruments and musicians to better understand what’s critical, and what's not, in a music file.

"If you look at how much data there is in an audio file, 1.5 million bits per second, and then you look at a musician playing an instrument, then you ask, well, how much information can a human actually transmit in a second? A musician can change their blowing pressure, the force of their lips on the reed, their fingerings, and all of that. But there’s no way that there's one and a half million bits of information being imparted by the musician to the instrument," explains Bocko.

So he has "taught" a computer how to play a clarinet, using precise acoustical measurements of the real instrument.

This "virtual instrument" enabled Bocko to compress a clarinet solo into a very tiny file; about 1000 times smaller than an MP3 file.

This knowledge won't be used to build a better iPod. What it is likely to do is improve other things that involve audio transmission. For instance, it could improve videoconferencing to get rid of that annoying lag when TV anchors are talking to reporters a half a world away.

"In the news business, if they are talking to someone in Afghanistan, and the anchor asks a question, the person is standing there for half a second like they are asleep or something. So reducing a lot of that latency is a good media application," notes Bocko.

Other possibilities using this improved compression include playing music over the Internet, with musicians performing the same piece of music in different cities. This telepresence could also link other professionals: from musicians to dancers to surgeons.

The engineering findings are also helping bring new tools to music teachers. By "seeing" what a musical note looks like on a computer, the research is adding a 21st century tweak to music education.

"In some respects, what goes on at Eastman could have gone on 150 years ago. You have a room with a teacher and an instrument like a violin; the technology was perfected in the 1600s," explains Headlam. "What we're trying to do is to find sort of the next stage of the practice room and the lesson, where students can use technology to try to get to that point at which they can play their instrument, and where that sort of kinetic and cognitive and musical aspects all come together. So they can just deal with musical content, rather than having to worry about technique."

It's a matter of adding another sense to music training. "Music students spend a lot of time with their ears, but you can also use your eyes and coordinate the two," continues Headlam. "So, you can imagine if you are playing something, you are looking at a screen, at some sort of oscilloscope display, and you see your line as you're playing, and then you see your teacher's line, and then those lines gradually come together as you are hearing what you want to do. Then at a certain point they come together, and in that way you have accomplished your goal by combining your sight and your hearing."

Bocko, who plays the bassoon, says his engineering research is often a combination of work and play.

"I am a musician of sorts, and I'm interested in really understanding what makes good music good. And so it's been a way for me to indulge my interest in music, by working with my colleagues at the Eastman School and immersing myself in this," he says.

Explore further: Google's Street View address reading software also able to decipher CAPTCHAs

More information: www.nsf.gov/news/special_reports/science_nation/musicman.jsp

add to favorites email to friend print save as pdf

Related Stories

Method developed to identify musical notes at any venue

Apr 23, 2010

A team of telecommunications engineers from the University of Jaen (UJA) has created a new method to automatically detect and identify the musical notes in an audio file and generate sheet music. The system ...

Music makes you smarter

Oct 26, 2009

Regularly playing a musical instrument changes the anatomy and function of the brain and may be used in therapy to improve cognitive skills.

DISSCO makes 'music' for Argonne, UIUC researchers

Jun 21, 2005

A mathematician and a musician have teamed up to create a new computer program that both composes music and creates the instrumentation to play it. The software is available for free from SourceForge.net.

Dark Matter Music

Jan 21, 2008

School of Physics and Astronomy Professor Prisca Cushman has created a Youtube video of the Dark Matter Music Box which uses data from the Cryogenic Dark Matter Search (CDMS) and converts them into sound and light.

Recommended for you

Ant colonies help evacuees in disaster zones

Apr 16, 2014

An escape route mapping system based on the behavior of ant colonies could give evacuees a better chance of reaching safe harbor after a natural disaster or terrorist attack by building a map of showing the shortest routes ...

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...