Butterflies shed light on how some species respond to global warming

Aug 05, 2010

With global warming and climate change making headlines nearly every day, it could be reassuring to know that some creatures might cope by gradually moving to new areas as their current ones become less hospitable. Nevertheless, natural relocation of species is not something that can be taken for granted, according to Jessica Hellmann, Associate Professor at the University of Notre Dame Department of Biological Science in Notre Dame, Ind. By studying two species of butterfly, she and her team have found evidence suggesting that a number of genetic variables affect whether and how well a species will relocate.

Dr. Hellmann and her team have conducted a series of studies in which manipulating the temperature of the butterfly larvae's environment revealed how the two species might respond to global warming. She will discuss the team's work at the 2010 American Physiological Society's Intersociety Meeting in Westminster, Colo., August 4-7.

Duskywing and Swallowtail Butterflies: Coping with Change

The Notre Dame team studied the larvae—or caterpillar phase—of two butterfly species, the Propertius duskywing butterfly (Erynnis propertius) and the Anise swallowtail butterfly (Papilio zelicaon). These , both cold-blooded insects, were chosen because of their ecological differences but they live in the same ecosystem, allowing Dr. Hellmann to compare their responses in a single study.

The duskywing is a small butterfly that does not easily fly great distances and stays close to the West Coast of the United States. Because it does not fly great distances, the of the group does not spread very far. The species is also characterized by the fact that its larvae consume only the new leaves of oak trees, making it highly specialized. The Anise swallowtail, on the other hand, is a much larger butterfly, and can fly greater distances with greater ease. Its genes are more likely to be spread out over a larger range as its flies between the and westward to and around California. The swallowtail larvae eat an assortment of plants, which also helps to spread genes across its range.

The researchers performed a number of experiments between butterfly larvae from the northernmost ranges of their habitat (Vancouver Island, Canada; "northern larvae") and butterflies from the central part of their habitat (California and southwest Oregon; "central larvae"). They exposed each group of larvae to conditions simulating the other group's summer and winter climates and fed each group food grown in the other group's location, all with a special focus on how the northern larvae responded. According to Dr. Hellmann, understanding how populations at the edge of a species' range respond to warming will provide insight on whether the species will shift with climate change.

The team theorized that northern members of a species whose genes are more spread out, like the swallowtail's, might be pre-adapted to rising temperatures and could perhaps even thrive as the northern climate gets warmer. Conversely, species like the duskytail, whose genes are not as spread out, could be locally adapted to climatic conditions at the edge of the range and northern populations might reduce under climate change.

Either way, it boils down to whether the species in Vancouver would respond positively to their climate becoming more like California's. So far, the answer for both species is "no," for different reasons in each species.

"In summer conditions, the duskywing larvae grew bigger, faster, and they survived better, which suggested that they liked it warmer, but winter was another story," said Dr. Hellmann. "In the warmer winter, they increased metabolism and burned through energy faster. This suggests that they were adapted to the cooler winters of Vancouver."

As for northern swallowtails in central conditions, "They just didn't care," Dr. Hellmann said. "They didn't respond to warming at all. They didn't do better or worse. This means that assumptions about warming possibly benefiting species [with more spread out genes], particularly at the northern edge of the range, are not appropriate."

The Genetic Connection

The team has begun studying the genetic explanation for how the two species respond to warming. They are investigating what genes are responsible for the individualized responses, and will use genomic tools to learn which genes are involved when the species is experiencing climate change, said Dr. Hellmann. "We will also try to determine which genes these butterflies are synthesizing when they experience climate warming. We want to know if northern and southern members of the same species are expressing their genome differently or the same."

The answers may explain the differences between various populations of the same species—northern vs. central—and why some species might not be inclined to relocate as the climate heats up.

"Expecting creatures to pick up and move north makes sense theoretically," Dr. Hellmann said. "But the reality is that genetic and physiological interactions are so complicated, it's hard to imagine how it will play out for all species everywhere."

Explore further: Stanford researchers rethink 'natural' habitat for wildlife

add to favorites email to friend print save as pdf

Related Stories

Climate change and species distributions

Aug 04, 2008

Scientists have long pointed to physical changes in the Earth and its atmosphere, such as melting polar ice caps, sea level rise and violent storms, as indicators of global climate change. But changes in climate can wreak ...

Should Humans Give Overheated Species a Lift?

Jan 24, 2007

As the Earth warms up (2006 was the hottest year on record in America and the hottest in Britain since 1659), ecologists expect many plants and animals to move up, too -- up north and uphill, to locations where temperatures ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

Apr 18, 2014

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.