Discovery of Saturn's auroral heartbeat

Aug 04, 2010
Saturn
Saturn. Photo by: NASA

(PhysOrg.com) -- An international team of scientists led by Dr Jonathan Nichols of the University of Leicester has discovered that Saturn’s aurora, an ethereal ultraviolet glow which illuminates Saturn’s upper atmosphere near the poles, pulses roughly once per Saturnian day.

The length of a Saturnian day has been under much discussion since it was discovered that the traditional 'clock' used to measure the rotation period of , a gas giant planet with no solid surface for reference, apparently does not keep good time.

Saturn, like all magnetised planets, emits into space from the polar regions. These radio emissions pulse with a period near to 11 h, and the timing of the pulses was originally, during the Voyager era, thought to represent the rotation of the planet. However, over the years the period of the pulsing of the radio emissions has varied, and since the rotation of a planet cannot be easily sped up or slowed down, the hunt for the source of the varying radio period has become one of the most perplexing puzzles in .

Now, in a paper to be published in (August 6), Nichols et al. use images from the NASA/ESA of Saturn’s auroras obtained between 2005-2009 to show that, not only do the radio emissions pulse, but the auroras beat in tandem with the radio.

Dr Nichols said: “This is an important discovery for two reasons. First, it provides a long-suspected but hitherto missing link between the radio and auroral emissions, and second, it adds a critical tool in diagnosing the cause of Saturn’s irregular heartbeat.”

Auroras, more commonly known as the “northern lights” on Earth, are caused when charged particles in space are funnelled along a planet’s magnetic field into the planet’s near the poles, whereupon they impact the and cause them to glow. This happens when a planet’s magnetic field is stressed by, for example, the buffeting from the stream of particles emitted by the Sun, or when moons such as Enceladus or Io expel material into the near-planet space.

Saturn’s radio waves were long suspected to be emitted by the charged particles as they hurtle toward the poles, but no radio-like pulsing had been observed in Saturn’s aurora, an enigmatic disconnect between the two supposedly-related phenomena.

However, Nichols et al. found that by using the clock of the radio pulsing to organise the auroral data, and stacking the results from all the Hubble Saturn auroral images obtained from 2005-2009 on top of each other, the auroral pulsing finally revealed itself.

Dr Nichols added: “This confirms that the auroras and the radio emissions are indeed physically associated, as suspected. This link is important, since it implies that the pulsing of the is being imparted by the processes driving Saturn’s aurora, which in turn can be studied by the NASA/ESA spacecraft Cassini, presently in orbit around Saturn. It thus takes us a significant step toward solving the mystery of the variable radio period.”

Explore further: Gravitational waves according to Planck

Related Stories

Chandra probes high-voltage auroras on Jupiter

Mar 02, 2005

Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's ...

Hubble Captures Saturn's Double Light Show (w/ Video)

Feb 16, 2010

(PhysOrg.com) -- In January and March 2009, astronomers using NASA's Hubble Space Telescope took advantage of a rare opportunity to record Saturn when its rings were edge-on, resulting in a unique movie featuring ...

Saturn's aurorae offer stunning double show (w/ Video)

Feb 11, 2010

An enormous and grand ringed planet, Saturn is certainly one of the most intriguing bodies orbiting the Sun. Hubble has now taken a fresh look at the fluttering aurorae that light up both of Saturn's poles.

Recommended for you

Image: NGC 6872 in the constellation of Pavo

14 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

14 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

Sep 22, 2014

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

Sep 22, 2014

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Hesperos
not rated yet Aug 04, 2010
What I'd like to know is: Why does Saturn have a Hexagon on top? Is it because Saturn is the 6th planet? If so, does Jupiter have a Pentagon on top?

Inquiring minds want to know!
LKD
not rated yet Aug 09, 2010
Hes,

It is caused by thermal eddies and pressure differentials. There is a video out there that shows a scientist creating the effect in a lab by using temperature variations.