Is biochar the answer for ag?

Aug 02, 2010

Scientists demonstrate that biochar, a type charcoal applied to soils in order to capture and store carbon, can reduce emissions of nitrous oxide, a potent greenhouse gas, and inorganic nitrogen runoff from agriculture settings. The finding will help develop strategies and technologies to reduce soil nitrous oxide emissions and reduce agriculture's influence on climate change.

A research team led by Bhupinder Pal Singh from Industry and Investment New South Wales and Balwant Singh from the University of Sydney, tested the effects of four types of biochar on emission and nitrogen leaching from two different varieties. Their results are reported in the July-August 2010 , published by the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

The study revealed for the first time that interactions between biochar and soil that occur over time are important when assessing the influence of biochar on nitrogen losses from soil. The scientists subjected soils samples to three wetting-drying cycles, to simulate a range of soil moistures during the five-month study period, and measured nitrous oxide emissions and nitrogen runoff.

Initially, biochar application produced inconsistent effects. Several early samples produced greater nitrous oxide emissions and nitrate leaching than the control samples.

However, during the third wetting-drying cycle, four months after biochar application, all biochars reduced nitrous oxide emissions by up to 73%, and reduced ammonium leaching by up to 94%. The researchers suggest that reductions in nitrous oxide emissions and nitrogen leaching over time were due to "ageing" of the biochars in soil.

"The impacts of biochars on nitrous oxide emissions from soil are of interest because even small reductions in nitrous oxide emissions can considerably enhance the greenhouse mitigation value of biochar, which is already proven to be a highly stable carbon pool in the soil environment," according to senior author Bhupinder Pal Singh. "This research highlights that impacts of biochar on nitrogen transformations in soil may change over time and hence stresses the need for long-term studies to assess biochar's potential to reduce losses from soil."

In addition to the three wet-dry cycles, the soil samples also received glucose and nutrient applications to supply of carbon and inorganic nutrients for optimal microbial activity. The research team tested biochar from two different sources, wood waste and poultry litter. Biochar is made when organic material is burned at high temperatures in the absence of oxygen.

Research is on-going at Industry and Investment NSW to investigate the causes of the reductions in nitrous oxide emissions by biochars, especially under field conditions, and to determine optimal rate and timing of biochar and fertiliser applications to agricultural soils to maximize the greenhouse mitigation value of biochar.

Explore further: Global change: Trees continue to grow at a faster rate

More information: View the abstract at www.agronomy.org/publications/… /abstracts/39/4/1224

Provided by American Society of Agronomy

4.3 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Biochar: turning waste into wealth

Jun 10, 2009

As all gardeners know, manure helps the flowers grow. But that manure also gives off greenhouse gases, contributing to global climate change.

Studying Fertilizers to Cut Greenhouse Gases

Nov 18, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists have found that using alternative types of fertilizers can cut back on greenhouse gas emissions, at least in one part of the country. They are ...

Reducing Agriculture's Climate Change Footprint

Nov 04, 2009

(PhysOrg.com) -- Curbing greenhouse gas emissions from cultivated fields may require going beyond cutting back on nitrogen fertilizer and changing crop rotation cycles, according to research by Agricultural ...

Recommended for you

Global change: Trees continue to grow at a faster rate

44 minutes ago

Trees have been growing significantly faster since the 1960s. The typical development phases of trees and stands have barely changed, but they have accelerated—by as much as 70 percent. This was the outcome ...

Study finds Great Barrier Reef is an effective wave absorber

48 minutes ago

New research has found that the Great Barrier Reef is a remarkably effective wave absorber, despite large gaps between the reefs. This means that landward of the reefs, waves are mostly related to local winds rather than ...

Cape Cod saltmarsh recovery looks good, falls short

1 hour ago

After decades of decline, grasses have returned to some once-denuded patches of Cape Cod's saltmarshes. To the eye, the marsh in those places seems healthy again, but a new study makes clear that a key service ...

Manure offsets fertiliser's nano-scale changes

1 hour ago

A UWA study has shown how long-term use of chemical fertilisers changes the soil on a nanoparticle scale and how these changes can be avoided by adding organic matter such as manure.

Red tide off northwest Florida could hit economy

4 hours ago

It's like Florida's version of The Blob. Slow moving glops of toxic algae in the northeast Gulf of Mexico are killing sea turtles, sharks and fish, and threatening the waters and beaches that fuel the region's ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
not rated yet Aug 02, 2010
If this biochar could be enriched with additional carbon, or if a sythetic version could be produced by doping derived carbon with sulfur, potassium, et c, the process could be coupled with this technology:

http://www.physor...915.html ,

For increased efficiency of carbon-capture, and possibly eliminate most -if not all- of the need for anoxic "burning" of biomass to make the biochar, which would further reduce CO2 release.