Surprising nucleon behavior

Jul 30, 2010

Data from DOE's Oak Ridge National Laboratory on neutron interactions with isotopes of platinum contradict a basic assumption underpinning random matrix theory, nuclear physics models and quantum chaos.

For more than a half century, scientists have assumed that highly excited states in intermediate- to heavy-mass nuclides are chaotic, and that data support this assumption.

However, new data from the Oak Ridge Electron Linear Accelerator strongly disagree.

The new results suggest that the roughly 200 nucleons inside the platinum nuclei studied act in unison to exhibit regular rather than chaotic properties. Given the relatively high energy and large number of nucleons involved, such collective behavior is totally unexpected and unexplained.

A possible explanation is that an even more fundamental tenet of theory--something known as form invariance--is violated.

"Either way, as these assumptions underpin the nuclear , the impact of these new findings could be very broad throughout , nuclear astrophysics and in applications such as nuclear energy," said ORNL physicist Paul Koehler.

Explore further: Lightweight membrane can significantly reduce in-flight aircraft noise

Related Stories

Argonne, Notre Dame begin new nuclear theory initiative

Oct 05, 2005

Physicists at the U.S. Department of Energy's Argonne National Laboratory and the University of Notre Dame have begun a new collaborative project to explore and explain the physics of rare nuclear isotopes.

Physicists pin down the proton-halo state in Flourine-17

May 26, 2010

A halo nucleus has one or more nucleons that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both ...

Looking inside the atom for new technologies

Feb 19, 2010

Nuclear physics, which studies the huge variety of nuclei in all the matter that surrounds us, not only provides answers about the evolution of our universe, it also provides the underpinning knowledge needed to exploit nuclear ...

Salt could cool cores of advanced nuclear reactors

Nov 03, 2006

The water in a conventional nuclear reactor cools the core, but a graduate student at the University of Missouri-Rolla says salt would be a better alternative in some advanced reactor designs.

Recommended for you

Thinner capsules yield faster implosions

8 hours ago

In National Ignition Facility (NIF) inertial confinement fusion (ICF) experiments, the fusion fuel implodes at a high speed in reaction to the rapid ablation, or blow-off, of the outer layers of the target ...

Direct visualization of magnetoelectric domains

10 hours ago

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

12 hours ago

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

3.5 / 5 (4) Jul 30, 2010
Paraphrasing Einstein - "God doesn't roll dice". And this is just one more example of that. Aside from the 19 or so "don't asks", something appears to be seriously wrong with the standard model and everything that derives from it.
5 / 5 (1) Jul 31, 2010
There probably can be some thermal fluctuations of nucleus structure, but generally their (meta)stable states should be some (local) energy minimums - should have some concrete structure.
Stating from QM we usually look at it from momentum point of view, but after unitary (Fourier) transform we get to the spatial structure - more intuitive point of view - in which there are successfully used e.g. Skyrmion-like solitons for particle models.
To understand how nucleons combine into nucleus, what hold them together, we have understand that spin isn't pointwise like charge, but rather curve-like: that on each perpendicular plane, quantum phase makes something like this: http://demonstrat...arities/

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.