Molecular light sources sensitive to environment

Jul 30, 2010
(a) In a transparent material, identical molecules all emit the same number of photons per second, which means that they produce the same amount of light (b) Opaque materials, such as paint and organic tissue, are a maze for photons. The molecules of these materials emit variable numbers of photons per second.

A Dutch-French team of scientists led by FOM (Foundation for Fundamental Research on Matter) researcher Dr Danang Birowosuto and University of Twente researcher Dr Allard Mosk has obtained the first experimental evidence that fluorescing molecules behave differently in opaque, light-scattering materials than they do in transparent materials.

Although this effect was predicted on a theoretical basis twenty years ago, it has never before been observed. An understanding of this process is important for the design of for energy-efficient lighting, powerful microscopes and efficient . These researchers published their findings in the prestigious journal .

At the nanoscale, fluorescing molecules behave as highly-efficient light sources. That is why they are frequently used in energy-efficient lighting, computer screens and imaging techniques in the biomedical sciences. In transparent materials identical molecules emit the same number of (photons) per second.

Maze for photons

In many applications, however, these molecules are not contained in a transparent material. The white, light-scattering phosphorous layer in energy-saving lamps and white LED lamps is an opaque milky colour, for example. This is because the material forms a light-scattering maze, in which photons regularly switch direction. In the 1990s, it was predicted that the molecules of such materials would emit variable amounts of light. Dependent on the way in which the surrounding, light-scattering nanoparticles are arranged, some molecules emit more photons per second than others.

The process by which a molecule emits a photon (spontaneous emission) is influenced by the nano-environment, and it is this effect that gives rise to the variation in . Dependent on its size and position, a light-scattering particle at a distance of several nanometres can either make it easier or more difficult for a molecule to emit a photon.

Nanobeads

These scientists from the MESA+ Institute for Nanotechnology at the University of Twente and from Grenoble University in France were the first to obtain clear experimental evidence that these light sources varied in this way. The experiments were performed using nanobeads filled with fluorescent molecules. These nanobeads were just 25 nanometres in diameter - more than a million times smaller than a human cell. Sensitive measurements were able to detect the beads, even when they were surrounded by a myriad of light-scattering particles.

After mixing the nanobeads with strongly scattering materials made of polystyrene and zinc oxide (a paint pigment), the researchers measured the amount of light emitted per second. In a transparent medium, this quantity was the same for each nanobead. In light-scattering media, however, the amount of light emitted varied considerably. The greater the light-scattering effect of the medium, the greater the variability. On the basis of these measurements, the researchers developed a new model to explain the range of this variability.

This result has increased our understanding of how light is emitted in light-scattering materials. In addition to improving existing light sources, this knowledge can be used in the development of new imaging techniques for studying biochemical processes in cells.

Explore further: Researchers develop scalable methods for manufacturing metamaterials

More information: 'Observation of spatial fluctuations of the local density of states in random photonic media' published online by Physical Review Letters: link.aps.org/doi/10.1103/PhysRevLett.105.013904

add to favorites email to friend print save as pdf

Related Stories

'Seeing' through paint

Mar 18, 2010

(PhysOrg.com) -- When light passes through materials that we consider opaque, such as paint, biological tissue, fabric and paper, it is scattered in such a complex way that an image does not come through. ...

How to see through opaque materials

Mar 08, 2010

New experiments show that it's possible to focus light through opaque materials and detect objects hidden behind them, provided you know enough about the material.

Light Scattering Method Reveals Details under Skin

Apr 12, 2005

A new optical method that can image subsurface structures under skin has been demonstrated by scientists at the National Institute of Standards and Technology (NIST) and the Johns Hopkins University Applied Physics Laboratory. The met ...

Mass weddings -- NIST's new efficient 2-photon source

Apr 12, 2007

For a variety of applications in physics and technology, ranging from quantum information theory to telecommunications, it’s handy to have access to pairs of photons created simultaneously, with a chosen ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...