Getting a step ahead of pathogens

Jul 27, 2010

A recent article in the journal Chaos examines the possibility of using epistasis to predict the outcome of the evolutionary processes, especially when the evolving units are pathogens such as viruses.

In biology and genetics, the concept of epistasis is what gives rise to the whole being more (or less) than the sum of its parts. The quantitative effect of a given mutation upon the traits of an organism has the potential to depend strongly upon the gene versions present in other parts of the , or even other mutations co-occurring in that gene.

These genetic interactions, termed epistasis, can impact all aspects of organisms and play a pivotal role in the manifestation of sex, ploidy, modularity, robustness, and the origin of species, the rate of adaptation, and the emergence of within individuals and populations.

A recent article in the journal Chaos, published by the American Institute of Physics, examines the possibility of using epistasis to predict the outcome of the , especially when the evolving units are pathogens such as viruses.

The article looks at three topics: empirical evidence from the RNA virus world, mathematical tools, and the application of these tools to particular problems. Santiago Elena and colleagues at Instituto de Biologia Molecular y Celular de Plantas have surveyed past work in this field and concluded that even though RNA viruses have small genomes composed of few genes that encode a limited number of proteins, epistasis is abundant and conditions their evolution.

The next steps may range from characterizing the statistical distributions of epistasis across hosts, which has tremendous relevance for the emergence of new viruses, to drawing the most likely evolutionary paths a virus may follow in response to treatments with .

While this research is still in the early stages, Elena sees great potential.

"By increasing our ability to predict the most likely evolutionary paths a virus may follow in response to clinical treatments, we could get a step ahead of them and, perhaps, create new and more durable antiviral therapies," he says.

Explore further: Diamagnetic levitation of pyrolitic graphite over a single magnet achieved

More information: The article, "Simple genomes, complex interactions: Epistasis in RNA virus" by Santiago F. Elena,2, Ricard V. Solé, and Josep Sardanyés was published online in the journal Chaos on June 30, 2010. See: link.aip.org/link/CHAOEH/v20/i2/p026106/s1

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Gene neighbors may have taken turns battling retroviruses

Dec 21, 2007

A cluster of antiviral genes in humans has likely battled retroviral invasions for millions of years. New research by Sara Sawyer, Ph.D., a postdoctoral research fellow in the Basic Sciences Division at Fred Hutchinson Cancer ...

Resistance to antibiotics: When 1+1 is not 2

Jul 24, 2009

The evolution of multiple antibiotic resistances is a global and difficult problem to eradicate. Isabel Gordo, a group leader at the Instituto Gulbenkian de Ciência (IGC), Portugal, reports in the paper published in the ...

Recommended for you

Awakening the potential of plasma acceleration

Aug 27, 2014

Civil engineering has begun for the new Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN. This proof-of-principle experiment will harness the power of wakefields generated by proton ...

Magnetic memories on the right track

Aug 27, 2014

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need ...

When an exciton acts like a hole

Aug 27, 2014

(Phys.org) —When is an electron hole like a quasiparticle (QP)? More specifically, what happens when a single electron hole is doped into a two-dimensional quantum antiferromagnet? Quasiparticle phenomena ...

User comments : 0