A new tool for improving switchgrass

Jul 27, 2010

Agricultural Research Service (ARS) scientists have developed a new tool for deciphering the genetics of a native prairie grass being widely studied for its potential as a biofuel. The genetic map of switchgrass, published by Christian Tobias, a molecular biologist at the ARS Western Regional Research Center in Albany, Calif., and his colleagues, is expected to speed up the search for genes that will make the perennial plant a more viable source of bioenergy.

Switchgrass is now grown as a cattle feed and to restore depleted soils. But interest in using it as a biofuel has intensified in recent years because it can be burned to produce electricity and, like corn stalks, can be converted to ethanol. It also grows on marginal lands, is adaptable to different regions, and--as a perennial--does not need to be replanted each year, which means lower energy costs and less runoff.

To assemble the genetic map, the team crossed a commercial variety of known as Kanlow with an ARS-developed variety known as Alamo to produce 238 plants. They extracted DNA from that population and assembled a map based on more than 1,000 that could each be attributed to one parent or the other.

The map divides the switchgrass genome into 18 distinct groups of genes linked together on the same strand of DNA. The results were recently published in the journal Genetics.

The work is funded by the U.S. Department of Energy and the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture, as part of the joint USDA-DOE Plant Feedstock Genomics for Bioenergy Program.

Understanding the genetic composition of switchgrass could produce big rewards. To make switchgrass more commercially viable as a , scientists are searching for ways to increase yields and make it easier to break down the plant cell walls, an essential step in producing ethanol from cellulosic biomass.

The genetic map could lead to genes associated with cell wall composition, crop yields and other useful traits. Scientists will be able to use the genetic map to compare the genetic profile of switchgrass to that of rice, sorghum and other plants with better understood genomes and find analogues to genes linked to specific traits in those crops.

Explore further: Improving the productivity of tropical potato cultivation

Provided by United States Department of Agriculture

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

New Switchgrass Germplasm Collected in Florida

Nov 26, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists and cooperators have collected 46 new populations of switchgrass in Florida, adding valuable new accessions to the germplasm collection of this ...

Estimating ethanol yields from CRP croplands

Mar 19, 2010

The scramble to find sufficient land for biofuel production has experts eyeing marginal croplands that have been placed in the Conservation Reserve Program (CRP). Now a study by Agricultural Research Service (ARS) scientists ...

Biofuels: More than just ethanol

Apr 05, 2007

As the United States looks to alternate fuel sources, ethanol has become one of the front runners. Farmers have begun planting corn in the hopes that its potential new use for corn will be a new income source. What many ...

Researchers pursue grasses as Earth-friendly biofuel

Jul 21, 2008

(PhysOrg.com) -- At a small site on the Batavia campus of Fermilab, ecologist Julie Jastrow of Argonne National Laboratory pushes the scientific frontier in a new and exciting way: She watches the grass grow.

Recommended for you

Building better soybeans for a hot, dry, hungry world

7 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

7 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

22 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Japan lawmakers demand continued whaling

Japanese lawmakers on Wednesday demanded the government redesign its "research" whaling programme to circumvent an international court ruling that described the programme as a commercial hunt dressed up as ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

US judge overturns state's abortion law

A federal judge on Wednesday overturned a North Dakota law banning abortions when a fetal heartbeat can be detected, as early as six weeks into pregnancy and before many women know they're pregnant.