New hydrolysis model promising tool in cellulosic biofuel studies

Jul 26, 2010

Scientists are working hard to develop the tools and find the organisms to break down the complex structure of plant cellulose into its component sugars - the key step toward fermentation of those sugars into usable biofuel. This process needs to be simple and economically efficient before cellulosic biofuels can compete with fossil fuels for transportation energy use.

As with any exploration of systems that involve largely unknown processes, a mechanistic model can be an important first step in improved understanding. Researchers at the Energy Biosciences Institute's (EBI) laboratories on the University of California, Berkeley, campus have improved that step, bringing science closer than ever before to predicting the deconstruction activity of enzymes towards cellulose.

In a paper recently accepted by the journal , four EBI scientists at UC Berkeley - chemical engineering faculty members Doug Clark and Harvey Blanch, postdoctoral researcher Seth Levine and graduate student Jerome Fox - detail their analysis that led to the most specific model to date of the enzymatic hydrolysis of cellulose.

"It's a first step in being able to have a detailed picture of what happens between cellulases (enzyme mixtures with complementary activities) and the substrate (cellulose)," said lead author Levine. Through this better understanding of the breakdown mechanisms, he said, more directed and rational approaches can be taken to engineer effective enzymes and improve the overall process of hydrolysis.

Much of the action happens at the surface of a substance like cellulose, the fibrous polysaccharide in the plant cell wall composed of hydrogen-bonded chains of the . Levine likens the surface to a "black box," where multiple shapes and unknown features of particles add to the complicated nature of the reactions there. Previous models relied on simple, sometimes overly broad assumptions and explained little about the chemical and physical reactions occurring there, he said.

With the EBI's latest methodology, the mechanisms by which cellulases trigger the hydrolysis of cellulose were delineated in three steps - adsorption, complexation (molecular bonding) and reaction. The researchers discovered that the amount of surface area was critical for the activities of enzymes and for how well they work together in combination.

"The model explicitly tracks individual cellulases and key cellulose surface properties," the paper concludes. "Independent enzyme adsorption and complexation steps have been incorporated in an attempt to capture the most important details of the enzyme-substrate interaction. The model results illustrate the importance of understanding the effect of relevant surface areas to enzyme hydrolysis activity."

One phenomenon they tracked was the typical decline in the sugar breakdown rates after an initial "burst" phase, a reaction that usually leads to longer processing and greater enzyme loads, a costly and time-consuming step. Their research revealed a mix of surface area, structural changes within the surface, and cellulase interactivity during hydrolysis as major contributors to the slowdown. Further refinement of the model in future investigations should uncover more details.

"This work confirms that despite the complexity, enzymatic hydrolysis of cellulose is amenable to modeling," said Clark, the principal investigator for the EBI program on "Bioprocess Optimization from Cellulose Hydrolysis to Product Fermentation." "It also shows the importance of surface area, which we can control through pre-treatment (of the cellulose). There are now a lot of levers we can play with in finding an optimal enzymatic route to break cellulose down into sugars that can be converted to fuels."

Though many unknowns still remain in deciphering the complicated process that extracts sugars from plant , the EBI's adds a significant tool to the scientist's kit.

Explore further: Vermicompost leachate improves tomato seedling growth

More information: The paper, "A Mechanistic Model of the Enzymatic Hydrolysis of Cellulose," can be found at www.energybiosciencesinstitute… media/ClarkPaper5-10

Related Stories

Researchers Create First Synthetic Cellulosome in Yeast

Oct 29, 2009

(PhysOrg.com) -- A team of researchers led by University of California, Riverside (UCR) Professor of Chemical Engineering Wilfred Chen has constructed for the first time a synthetic cellulosome in yeast, which is much more ...

Improved Reaction Data Heat Up the Biofuels Harvest

Aug 06, 2008

High food prices, concern over dwindling supplies of fossil fuels and the desire for clean, renewable energy have led many to seek ways to make ethanol out of cellulosic sources such as wood, hay and switchgrass. ...

Formation of cellulose fibers tracked for the first time

Apr 20, 2006

Cellulose--a fibrous molecule found in all plants--is the most abundant biological material on Earth. It is also a favored target of renewable, plant-based biofuels research. Despite overwhelming interest, ...

Process can cut the cost of making cellulosic biofuels

Jan 22, 2009

A patented Michigan State University process to pretreat corn-crop waste before conversion into ethanol means extra nutrients don't have to be added, cutting the cost of making biofuels from cellulose.

Scientists create new enzymes for biofuel production

Mar 23, 2009

Researchers at the California Institute of Technology (Caltech) and world-leading gene-synthesis company DNA2.0 have taken an important step toward the development of a cost-efficient process to extract sugars ...

Recommended for you

Vermicompost leachate improves tomato seedling growth

12 hours ago

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

13 hours ago

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.