Adaptation in mole blood aids tunnelling

Jul 19, 2010

'Super hemoglobin' allows moles to thrive underground. Researchers writing in the open access journal BMC Evolutionary Biology have made the first identification of an adaptation in the blood of Eastern moles which allows more efficient transport of carbon dioxide, facilitating the moles' burrowing behavior.

Kevin Campbell from the University of Manitoba, Canada, worked with a team of researchers to study the blood of three underground species of North American moles. He said, "Unlike terrestrial animals, moles are routinely exposed to conditions of low oxygen and high . Burrowing is difficult in itself, but is made even more challenging by the requirement to re-breathe their own expired air. We've found that one species, the Eastern mole, appears to be uniquely adapted to underground life through the evolution of a special kind of hemoglobin in their blood that greatly enhances its carbon dioxide carrying capacity".

The researchers determined the genetic code for different hemoglobin components in the three mole species and measured how well these components bind to their usual target molecules. They also tested the oxygen binding properties of whole blood samples. Speaking about the results, Campbell said, "It has been speculated that the main mechanism for the moles adaptation to subterranean life revolves around the molecule 2,3-diphosphoglycerate, or DPG, that modulates hemoglobin's oxygen binding inside the . However, in the of the eastern , the key sites which would normally bind DPG are deleted, thereby allowing for the binding of additional carbon dioxide molecules".

Adds co-author Roy Weber, University of Aarhus, Denmark, "It would be interesting to see if the hemoglobins of other burrowing species exhibit comparable specializations". The team envisions that this line of research could lead to the development of improved artificial human blood substitutes with specially engineered properties.

Explore further: Evolution of competitiveness

More information: Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole, Kevin L Campbell, Jay F Storz, Anthony V Signore, Hideaki Moriyama, Kenneth C Catania, Alexander P Payson, Joseph Bonaventura, Joerg Stetefeld and Roy E Weber, BMC Evolutionary Biology 2010, 10:214, doi:10.1186/1471-2148-10-214

add to favorites email to friend print save as pdf

Related Stories

Diagnosing skin cancers with light, not scalpels

Jun 04, 2007

In an early step toward nonsurgical screening for malignant skin cancers, Duke University chemists have demonstrated a laser-based system that can capture three-dimensional images of the chemical and structural changes under ...

Better life support for artificial liver cells

Aug 23, 2007

Researchers at Ohio State University are developing technology for keeping liver cells alive and functioning normally inside bioartificial liver-assist devices (BLADs).

Naked mole rats may hold clues to surviving stroke

Nov 30, 2009

Blind, nearly hairless, and looking something like toothy, plump, pink fingers, naked mole rats may rank among nature's most maligned creatures, but their unusual physiology endears them to scientists.

Classifying molar pregnancy

Oct 21, 2009

Researchers from The Johns Hopkins Medical Institutions have used short tandem repeat (STR) genotyping and p57 immunohistochemistry to distinguish hydatidiform moles. The related report by Murphy et al "Molecular Genotyping ...

Blood Enzyme Could Help Realize Clean Coal

Dec 03, 2009

(PhysOrg.com) -- An enzyme in our blood that enables our lungs to exhale carbon dioxide could be the key to isolating carbon dioxide emissions from coal plants in order to store them safely underground. A ...

Recommended for you

Evolution of competitiveness

Oct 29, 2014

Virtually all organisms in the living world compete with members of their own species. However, individuals differ strongly in how much they invest into their competitive ability. Some individuals are highly competitive and ...

Status shift for whale pelvic bones

Oct 29, 2014

For decades, scientists assumed that the relatively small pelvic bones found in whales were simple remnants of their land-dwelling past, "useless vestiges" that served no real purpose, akin to the human appendix ...

Is the outcome of evolution predictable?

Oct 28, 2014

If one would rewind the tape of life, would evolution result in the same outcome? The Harvard evolutionary biologist Stephen Jay Gould came up with this famous thought experiment. He suggested that evolution would not repeat ...

How did complex life evolve? The answer could be inside out

Oct 27, 2014

A new idea about the origin of complex life turns current theories inside out. In the open access journal BMC Biology, cousins Buzz and David Baum explain their 'inside-out' theory of how eukaryotic cells, which all multic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.