Fungi's genetic sabotage in wheat discovered

Jul 13, 2010

Using molecular techniques, Agricultural Research Service (ARS) and collaborating scientists have shown how the subversion of a single gene in wheat by two fungal foes triggers a kind of cellular suicide in the grain crop's leaves.

Fortunately, the team has also developed DNA molecular markers that can be used to rapidly screen commercial cultivars for the gene, Tsn1, so it can be eliminated by . This, in turn, would deprive the fungi of their primary means of killing off leaf tissue to feed and grow, explains Justin Faris, a with the ARS Cereal Crops Research Unit in Fargo, N.D.

The fungi—Pyrenophora tritici-repentis (also known as tan spot) and Stagonospora nodorum (leaf blotch)—are often partners in crime, occurring in the same crop fields and producing the same toxin, ToxA, to induce a Tsn1-controlled response in wheat called programmed cell death (PCD). Normally, PCD protects plants by confining invading pathogens in dead cells. However, the strategy doesn't work against the ToxA fungi because they're "necrotrophs," pathogens that feed on dead tissue.

To better understand this genetic trickery, Faris led a team of scientists from seven different research organizations in isolating, sequencing and cloning the DNA sequence for Tsn1 from cultivated wheat and its wild relatives. Based on their analysis, the researchers concluded that modern-day wheat inherited Tsn1 from goatgrass. They figure this happened after a goatgrass gene for the kinase fused with another gene, NB-LRR, which probably conferred resistance to biotrophs, pathogens that feed on living tissue.

Interestingly, Tsn1 is controlled by wheat's , and only initiates PCD in response to ToxA during daylight hours. At night, Tsn1 shuts down and "ignores" ToxA, suggesting the toxin may indirectly interfere with the plant's photosynthesis.

Explore further: Canola flowers faster with heat genes

More information: The team, which includes researchers from North Dakota State University-Fargo and the Australian Centre for Necrotrophic Fungal Pathogens-Murdoch among others, reported its findings online this week in the Proceedings of the National Academy of Sciences.

Provided by United States Department of Agriculture

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Plant Sacrifices Cells to Fight Invaders

May 20, 2005

Gene ensures programmed cell suicide does not go unchecked Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PC ...

Diverse wheat tapped for antifungal genes

Apr 01, 2010

Asian wheat may offer novel genes for shoring up the defenses of U.S. varieties against Fusarium graminearum fungi that cause Fusarium head blight (FHB) disease.

Building disease-beating wheat

Dec 12, 2007

Pioneered by CSIRO researchers, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT) and Sydney University, the research illustrates the major genetic improvements possible without ...

Researchers developing better wheat

Feb 16, 2006

Eighteen universities across the United States are combining desirable genes from different varieties of wheat to make better and more competitive varieties.

Uncovering the mystery of a major threat to wheat

Jun 01, 2010

Agricultural Research Service (ARS) scientists have solved a longstanding mystery as to why a pathogen that threatens the world's wheat supply can be so adaptable, diverse and virulent. It is because the fungus that causes ...

Recommended for you

Canola flowers faster with heat genes

2 hours ago

(Phys.org) —A problem that has puzzled canola breeders for years has been solved by researchers from The University of Western Australia - and the results could provide a vital breakthrough in understanding ...

Sequencing the genome of salamanders

Aug 20, 2014

University of Kentucky biologist Randal Voss is sequencing the genome of salamanders. Though we share many of the same genes, the salamander genome is massive compared to our own, about 10 times as large.

User comments : 0