Chemists make breakthrough in nanoscience research

Jul 12, 2010

A team of scientists led by Eugenia Kumacheva of the Department of Chemistry at the University of Toronto has discovered a way to predict the organization of nanoparticles in larger forms by treating them much the same as ensembles of molecules formed from standard chemical reactions.

"Currently, no model exists describing the organization of nanoparticles," says Kumacheva. "Our work paves the way for the prediction of the properties of nanoparticle ensembles and for the development of new design rules for such structures."

The focus of nanoscience is gradually shifting from the synthesis of individual nanoparticles to their organization in larger structures. In order to use nanoparticle ensembles in functional devices such as devices or optical waveguides, it is important to achieve control of their structure.

According to the researchers' observations, the self-organization of nanoparticles is an efficient strategy for producing with complex, hierarchical architectures. "The past decade has witnessed great progress in - particularly nanoparticle self-assembly - yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge," she continues. "We report on the remarkable similarity between the self-assembly of and chemical reactions leading to the formation of polymer molecules. The nanoparticles act as multifunctional single units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a highly ordered polymer."

"We developed a new approach that enables a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures, their aggregation numbers and size distribution, and the formation of structural isomers."

Kumacheva was joined in the research by postdoctoral fellows Kun Liu, Nana Zhao and Wei Li, and former doctoral student Zhihong Nie, along with Professor Michael Rubinstein of the University of North Carolina. As chemists, the team took an unconventional look at nanoparticle organization.

"We treated them as molecules, not particles, which in a process resembling a polymerization reaction, organize themselves into polymer-like assemblies," says Kumacheva. "Using this analogy, we used the theory of polymerization and predicted the architecture of the so-called 'molecules' and also found other, unexpected features that can find interesting applications."

Explore further: Gelatin nanoparticles could deliver drugs to the brain

More information: The findings were published in a report titled "Step-Growth Polymerization of Inorganic Nanoparticles" in the July 9 issue of Science.

Related Stories

Self-Assembling Nanoparticles Image Tumor Cells

Jul 23, 2007

By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that ...

Researchers find new route to nano self-assembly

Oct 22, 2009

(PhysOrg.com) -- If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance towards this goal has been achieved by researchers ...

Making Better Magnetic Nanoparticles

Dec 18, 2006

Using a polymer coating designed to resemble the outer surface of a cell membrane, a team of investigators led by Steve Armes, Ph.D., of the University of Sheffield in the United Kingdom, has created a highly stable, biocompatible ...

Highlight: Quasi-Crystalline Order at Nanoscale

Jan 11, 2010

Nanoparticles have a strong tendency to form periodic structures. Mixing and matching of two different types of nanoparticles allows the formation of binary nanoparticle superlattices isostructural to ionic ...

A Good Eye for Oxygen

Mar 27, 2009

(PhysOrg.com) -- We cannot live without it; yet too much of it causes damage: oxygen is a critical component of many physiological and pathological processes in living cells. Oxygen deficiency in tissues is thus related to ...

Recommended for you

'Mind the gap' between atomically thin materials

Dec 24, 2014

When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.