Geneticists shed light on flowering plants

Jun 29, 2010
In winter or early spring, Arabidopsis plants without an active DNF gene are already flowering (right). Those with the DNF gene will delay flowering until later in the year when days are longer and conditions are more favorable for survival of their seedlings (left). Credit: Dr Steve Jackson

A team of researchers from Warwick have isolated a gene responsible for regulating the expression of CONSTANS, an important inducer of flowering, in Arabidopsis.

'Being able to understand and ultimately control seasonal flowering will enable more predictable flowering, better scheduling and reduced wastage of crops', explained Dr Jackson.

Whilst the relationship between CONSTANS and flowering time in response to day length is well established, the mechanism controlling the expression of CONSTANS is still not fully understood.

The scientists present their work at the Society for Experimental Biology Annual Meeting in Prague on Wednesday 30th June 2010.

Many plants control when they flower to coincide with particular seasons by responding to the length of the day, a process known as photoperiodism. A flowering mutant of Arabidopsis, which had an altered response to photoperiod, was used in the study led by Dr Stephen Jackson.

In the study funded by the BBSRC, the team identified the in the mutant plant that caused its abnormal flowering time.

They then cloned a working version of the gene, known as DAY NEUTRAL FLOWERING (DNF), from a normal Arabidopsis plant and introduced it into the mutant plant to restore its normal flowering response to day length.

The role of DNF in normal plant flowering is to regulate the CONSTANS gene. CONSTANS is activated only in the light and the plant is triggered to flower when CONSTANS levels rise above a certain threshold level during the daytime.

In normal plants, DNF represses the levels of CONSTANS until the day length is long enough and conditions are favourable for the survival of their seedlings. In mutant plants without an active DNF gene, CONSTANS is not repressed and they are able to flower earlier in the year, when days are still short.

The presence of the DNF gene has not yet been identified in species other than Arabidopsis but the scientists believe their on-going work may prove to have a wider significance for other species.

Scientists can override complex pathways that control flowering by artificially inducing or inhibiting key flowering such as DNF and CONSTANS. This can already be done in the laboratory by spraying an 'inducing agent' onto plants, stimulating them to flower early.

This could be used to extend the length of the harvesting season or to co-ordinate flowering or fruit production to a specific time. Growers already regulate the flowering of a few such as Chrysanthemum and Poinsettia, the latter specifically for Christmas and Easter.

Unravelling the complex pathways that control plant flowering will help scientists to understand and influence flowering patterns more effectively and in many different species.

Explore further: Transparent larvae hide opaque eyes behind reflections

Provided by Society for Experimental Biology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Flowering Signal Found

Jun 09, 2007

The signal that causes plants to flower, or "florigen," has been identified by researchers at UC Davis, the University of Arizona, Tucson, and collaborators in New Zealand and Mexico.

Darwinian mystery may have been solved

May 11, 2006

U.S. scientists may have solved Charles Darwin's "abominable mystery" of flowering plants' rapid evolution after they appeared 140 million years ago.

Scientists show that plants have measure of the shortest day

Dec 23, 2009

(PhysOrg.com) -- It is not only people who feel the effects of short winter days - new research by the University of Edinburgh and the University of Warwick has shed light on how plants calculate their own winter solstice. ...

Recommended for you

Transparent larvae hide opaque eyes behind reflections

3 hours ago

Becoming invisible is probably the ultimate form of camouflage: you don't just blend in, the background shows through you. And this strategy is not as uncommon as you might think. Kathryn Feller, from the University of Maryland ...

Peacock's train is not such a drag

4 hours ago

The magnificent plumage of the peacock may not be quite the sacrifice to love that it appears to be, University of Leeds researchers have discovered.

Spy on penguin families for science

12 hours ago

Penguin Watch, which launches on 17 September 2014, is a project led by Oxford University scientists that gives citizen scientists access to around 200,000 images of penguins taken by remote cameras monitoring ...

User comments : 0