Quantum simulations uncoverhydrogen's phase transitions

Jun 23, 2010
As indicated in the graphic, the gas giant planets of our solar system - Jupiter, Saturn, Uranus and Neptune - are mostly composed of hydrogen. Image courtesy of NASA

Hydrogen is the most abundant element in the universe and is a major component of giant planets such as Jupiter and Saturn.

But not much is known about what happens to this abundant element under high-pressure conditions when it transforms from one state to another.

Using quantum simulations, scientists at the Lawrence Livermore National Laboratory, the University of Illinois at Urbana-Champaign and the University of L'Aquia in Italy were able to uncover these phase transitions in the laboratory similar to how they would occur in the centers of .

They discovered a first order phase transition, a discontinuity, in between a molecular state with low conductivity and a highly conductive atomic state. The critical point of the transition occurs at high temperatures, near 3100 degrees Fahrenheit and more than 1 million atmospheres of pressure.

"This research sheds light on the properties of this ubiquitous element and may aid in efforts to understand the formation of planets," said LLNL's Eric Schwegler.

The team used a variety of sophisticated quantum simulation approaches to examine the onset of molecular diassociation in hydrogen under high-pressure conditions. The simulations indicated there is a range of densities where the of the fluid increases in a discontinuous fashion for temperatures below 3100 degrees Fahrenheit.

There is a liquid-liquid-solid multiphase coexistence point in the phase diagram that corresponds to the intersection of the liquid-liquid phase transition, according to Miguel Morales from the University of Illinois and lead author of a paper appearing online in the for the week of June 21-25.

Explore further: IHEP in China has ambitions for Higgs factory

Provided by Lawrence Livermore National Laboratory

3.7 /5 (9 votes)

Related Stories

Evidence of a new phase in liquid hydrogen

Feb 25, 2010

(PhysOrg.com) -- We like to think that we’ve got hydrogen, one of the most basic of elements, figured out. However, hydrogen can still surprise, especially once scientists start probing its properties on ...

Squashing Silane into Metal

Jan 09, 2009

(PhysOrg.com) -- Squeeze it hard enough and hydrogen, the most abundant and lightest element in our Universe, strangely takes on a metallic nature. During this state, as it loses hold of its electrons, hydrogen ...

On the path to metallic hydrogen

Aug 03, 2009

Hydrogen, the most common element in the universe, is normally an insulating gas, but at high pressures it may turn into a superconductor. Now, scientists at the Carnegie Institution in Washington D.C., US, ...

Recommended for you

IHEP in China has ambitions for Higgs factory

4 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

6 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

7 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

10 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Megadeth312
not rated yet Jun 23, 2010
Quantum simulations "uncoverhydrogen's" phase transitions

.